1. Chromosomes and Gene Expression
  2. Plant Biology
Download icon

Natural variation in autumn expression is the major adaptive determinant distinguishing Arabidopsis FLC haplotypes

  1. Jo Hepworth
  2. Rea L Antoniou-Kourounioti
  3. Kristina Berggren
  4. Catja Selga
  5. Eleri H Tudor
  6. Bryony Yates
  7. Deborah Cox
  8. Barley Rose Collier Harris
  9. Judith A Irwin
  10. Martin Howard
  11. Torbjörn Säll
  12. Svante Holm  Is a corresponding author
  13. Caroline Dean  Is a corresponding author
  1. John Innes Centre, United Kingdom
  2. Mid Sweden University, Sweden
  3. Swedish University of Agricultural Sciences, Sweden
  4. University of Oxford, United Kingdom
  5. Lund University, Sweden
  6. Mid-Sweden University, Sweden
Research Article
  • Cited 8
  • Views 1,984
  • Annotations
Cite this article as: eLife 2020;9:e57671 doi: 10.7554/eLife.57671

Abstract

In Arabidopsis thaliana, winter is registered during vernalization through the temperature-dependent repression and epigenetic silencing of floral repressor FLOWERING LOCUS C (FLC). Natural Arabidopsis accessions show considerable variation in vernalization. However, which aspect of the FLC repression mechanism is most important for adaptation to different environments is unclear. By analyzing FLC dynamics in natural variants and mutants throughout winter in three field sites, we find that autumnal FLC expression, rather than epigenetic silencing, is the major variable conferred by the distinct Arabidopsis FLC haplotypes. This variation influences flowering responses of Arabidopsis accessions resulting in an interplay between promotion and delay of flowering in different climates to balance survival and, through a post-vernalization effect, reproductive output. These data reveal how expression variation through non-coding cis variation at FLC has enabled Arabidopsis accessions to adapt to different climatic conditions and year-on-year fluctuations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Jo Hepworth

    Crop Genetics, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4621-8414
  2. Rea L Antoniou-Kourounioti

    Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Kristina Berggren

    Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7859-9928
  4. Catja Selga

    Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8683-1291
  5. Eleri H Tudor

    Crop Genetics, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Bryony Yates

    Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Deborah Cox

    Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Barley Rose Collier Harris

    Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5745-1812
  9. Judith A Irwin

    Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Martin Howard

    Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7670-0781
  11. Torbjörn Säll

    Department of Biology, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  12. Svante Holm

    Mid-Sweden University, Sundsvall, Sweden
    For correspondence
    Svante.Holm@miun.se
    Competing interests
    The authors declare that no competing interests exist.
  13. Caroline Dean

    Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
    For correspondence
    caroline.dean@jic.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6555-3525

Funding

Horizon 2020 Framework Programme (MEXTIM)

  • Jo Hepworth
  • Rea L Antoniou-Kourounioti
  • Kristina Berggren
  • Catja Selga
  • Eleri H Tudor
  • Deborah Cox
  • Barley Rose Collier Harris
  • Judith A Irwin
  • Martin Howard
  • Torbjörn Säll
  • Svante Holm
  • Caroline Dean

Biotechnology and Biological Sciences Research Council (BB/J004588/1)

  • Jo Hepworth
  • Rea L Antoniou-Kourounioti
  • Eleri H Tudor
  • Deborah Cox
  • Barley Rose Collier Harris
  • Judith A Irwin
  • Martin Howard
  • Caroline Dean

Biotechnology and Biological Sciences Research Council (BB/P013511/1)

  • Jo Hepworth
  • Rea L Antoniou-Kourounioti
  • Eleri H Tudor
  • Bryony Yates
  • Deborah Cox
  • Barley Rose Collier Harris
  • Judith A Irwin
  • Martin Howard
  • Caroline Dean

Biotechnology and Biological Sciences Research Council (BB/P003095/1)

  • Jo Hepworth
  • Eleri H Tudor
  • Judith A Irwin

Biotechnology and Biological Sciences Research Council (BB/L016079/1)

  • Eleri H Tudor

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hao Yu, National University of Singapore & Temasek Life Sciences Laboratory, Singapore

Publication history

  1. Received: April 8, 2020
  2. Accepted: September 8, 2020
  3. Accepted Manuscript published: September 9, 2020 (version 1)
  4. Version of Record published: September 25, 2020 (version 2)

Copyright

© 2020, Hepworth et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,984
    Page views
  • 323
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Jugal Mohapatra et al.
    Tools and Resources

    Serine ADP-ribosylation (ADPr) is a DNA damage-induced post-translational modification catalyzed by the PARP1/2:HPF1 complex. As the list of PARP1/2:HPF1 substrates continues to expand, there is a need for technologies to prepare mono- and poly-ADP-ribosylated proteins for biochemical interrogation. Here we investigate the unique peptide ADPr activities catalyzed by PARP1 in the absence and presence of HPF1. We then exploit these activities to develop a method that facilitates installation of ADP-ribose polymers onto peptides with precise control over chain length and modification site. Importantly, the enzymatically mono- and poly-ADP-ribosylated peptides are fully compatible with protein ligation technologies. This chemoenzymatic protein synthesis strategy was employed to assemble a series of full-length, ADP-ribosylated histones and show that ADPr at H2BS6 or H3S10 converts nucleosomes into robust substrates for the chromatin remodeler ALC1. We found ALC1 preferentially remodels 'activated' substrates within heterogeneous mononucleosome populations and asymmetrically ADP-ribosylated dinucleosome substrates, and that nucleosome serine ADPr is sufficient to stimulate ALC1 activity in nuclear extracts. Our study identifies a biochemical function for nucleosome serine ADPr and describes a new, highly modular approach to explore the impact that site-specific serine mono- and poly-ADPr have on protein function.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Fang Huang et al.
    Research Article Updated

    The positive transcription elongation factor b (P-TEFb) is a critical coactivator for transcription of most cellular and viral genes, including those of HIV. While P-TEFb is regulated by 7SK snRNA in proliferating cells, P-TEFb is absent due to diminished levels of CycT1 in quiescent and terminally differentiated cells, which has remained unexplored. In these cells, we found that CycT1 not bound to CDK9 is rapidly degraded. Moreover, productive CycT1:CDK9 interactions are increased by PKC-mediated phosphorylation of CycT1 in human cells. Conversely, dephosphorylation of CycT1 by PP1 reverses this process. Thus, PKC inhibitors or removal of PKC by chronic activation results in P-TEFb disassembly and CycT1 degradation. This finding not only recapitulates P-TEFb depletion in resting CD4+ T cells but also in anergic T cells. Importantly, our studies reveal mechanisms of P-TEFb inactivation underlying T cell quiescence, anergy, and exhaustion as well as proviral latency and terminally differentiated cells.