Natural variation in autumn expression is the major adaptive determinant distinguishing Arabidopsis FLC haplotypes

  1. Jo Hepworth
  2. Rea L Antoniou-Kourounioti
  3. Kristina Berggren
  4. Catja Selga
  5. Eleri H Tudor
  6. Bryony Yates
  7. Deborah Cox
  8. Barley Rose Collier Harris
  9. Judith A Irwin
  10. Martin Howard
  11. Torbjörn Säll
  12. Svante Holm  Is a corresponding author
  13. Caroline Dean  Is a corresponding author
  1. John Innes Centre, United Kingdom
  2. Mid Sweden University, Sweden
  3. Swedish University of Agricultural Sciences, Sweden
  4. University of Oxford, United Kingdom
  5. Lund University, Sweden
  6. Mid-Sweden University, Sweden

Abstract

In Arabidopsis thaliana, winter is registered during vernalization through the temperature-dependent repression and epigenetic silencing of floral repressor FLOWERING LOCUS C (FLC). Natural Arabidopsis accessions show considerable variation in vernalization. However, which aspect of the FLC repression mechanism is most important for adaptation to different environments is unclear. By analyzing FLC dynamics in natural variants and mutants throughout winter in three field sites, we find that autumnal FLC expression, rather than epigenetic silencing, is the major variable conferred by the distinct Arabidopsis FLC haplotypes. This variation influences flowering responses of Arabidopsis accessions resulting in an interplay between promotion and delay of flowering in different climates to balance survival and, through a post-vernalization effect, reproductive output. These data reveal how expression variation through non-coding cis variation at FLC has enabled Arabidopsis accessions to adapt to different climatic conditions and year-on-year fluctuations.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Jo Hepworth

    Crop Genetics, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4621-8414
  2. Rea L Antoniou-Kourounioti

    Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Kristina Berggren

    Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7859-9928
  4. Catja Selga

    Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8683-1291
  5. Eleri H Tudor

    Crop Genetics, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Bryony Yates

    Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Deborah Cox

    Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Barley Rose Collier Harris

    Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5745-1812
  9. Judith A Irwin

    Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Martin Howard

    Computational and Systems Biology, John Innes Centre, Norwich, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7670-0781
  11. Torbjörn Säll

    Department of Biology, Lund University, Lund, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  12. Svante Holm

    Mid-Sweden University, Sundsvall, Sweden
    For correspondence
    Svante.Holm@miun.se
    Competing interests
    The authors declare that no competing interests exist.
  13. Caroline Dean

    Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
    For correspondence
    caroline.dean@jic.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6555-3525

Funding

Horizon 2020 Framework Programme (MEXTIM)

  • Jo Hepworth
  • Rea L Antoniou-Kourounioti
  • Kristina Berggren
  • Catja Selga
  • Eleri H Tudor
  • Deborah Cox
  • Barley Rose Collier Harris
  • Judith A Irwin
  • Martin Howard
  • Torbjörn Säll
  • Svante Holm
  • Caroline Dean

Biotechnology and Biological Sciences Research Council (BB/J004588/1)

  • Jo Hepworth
  • Rea L Antoniou-Kourounioti
  • Eleri H Tudor
  • Deborah Cox
  • Barley Rose Collier Harris
  • Judith A Irwin
  • Martin Howard
  • Caroline Dean

Biotechnology and Biological Sciences Research Council (BB/P013511/1)

  • Jo Hepworth
  • Rea L Antoniou-Kourounioti
  • Eleri H Tudor
  • Bryony Yates
  • Deborah Cox
  • Barley Rose Collier Harris
  • Judith A Irwin
  • Martin Howard
  • Caroline Dean

Biotechnology and Biological Sciences Research Council (BB/P003095/1)

  • Jo Hepworth
  • Eleri H Tudor
  • Judith A Irwin

Biotechnology and Biological Sciences Research Council (BB/L016079/1)

  • Eleri H Tudor

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Hepworth et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,997
    views
  • 443
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jo Hepworth
  2. Rea L Antoniou-Kourounioti
  3. Kristina Berggren
  4. Catja Selga
  5. Eleri H Tudor
  6. Bryony Yates
  7. Deborah Cox
  8. Barley Rose Collier Harris
  9. Judith A Irwin
  10. Martin Howard
  11. Torbjörn Säll
  12. Svante Holm
  13. Caroline Dean
(2020)
Natural variation in autumn expression is the major adaptive determinant distinguishing Arabidopsis FLC haplotypes
eLife 9:e57671.
https://doi.org/10.7554/eLife.57671

Share this article

https://doi.org/10.7554/eLife.57671

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ashley L Cook, Surojit Sur ... Nicolas Wyhs
    Research Article

    Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high-throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD in human cells. This screen implicated disruption of kinase SMG1’s phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from human and murine truncating mutations in vitro and murine cells in vivo. Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable human leukocyte antigens (HLA) class I-associated peptides from NMD-downregulated proteins on the surface of human cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Kira A Cozzolino, Lynn Sanford ... Dylan J Taatjes
    Research Article

    Hyperactive interferon (IFN) signaling is a hallmark of Down syndrome (DS), a condition caused by Trisomy 21 (T21); strategies that normalize IFN signaling could benefit this population. Mediator-associated kinases CDK8 and CDK19 drive inflammatory responses through incompletely understood mechanisms. Using sibling-matched cell lines with/without T21, we investigated Mediator kinase function in the context of hyperactive IFN in DS over a 75 min to 24 hr timeframe. Activation of IFN-response genes was suppressed in cells treated with the CDK8/CDK19 inhibitor cortistatin A (CA), via rapid suppression of IFN-responsive transcription factor (TF) activity. We also discovered that CDK8/CDK19 affect splicing, a novel means by which Mediator kinases control gene expression. To further probe Mediator kinase function, we completed cytokine screens and metabolomics experiments. Cytokines are master regulators of inflammatory responses; by screening 105 different cytokine proteins, we show that Mediator kinases help drive IFN-dependent cytokine responses at least in part through transcriptional regulation of cytokine genes and receptors. Metabolomics revealed that Mediator kinase inhibition altered core metabolic pathways in cell type-specific ways, and broad upregulation of anti-inflammatory lipid mediators occurred specifically in kinase-inhibited cells during hyperactive IFNγ signaling. A subset of these lipids (e.g. oleamide, desmosterol) serve as ligands for nuclear receptors PPAR and LXR, and activation of these receptors occurred specifically during hyperactive IFN signaling in CA-treated cells, revealing mechanistic links between Mediator kinases, lipid metabolism, and nuclear receptor function. Collectively, our results establish CDK8/CDK19 as context-specific metabolic regulators, and reveal that these kinases control gene expression not only via TFs, but also through metabolic changes and splicing. Moreover, we establish that Mediator kinase inhibition antagonizes IFN signaling through transcriptional, metabolic, and cytokine responses, with implications for DS and other chronic inflammatory conditions.