1. Physics of Living Systems
Download icon

Epithelial colonies in vitro elongate through collective effects

  1. Jordi Comelles
  2. Soumya S S
  3. Linjie Lu
  4. Emilie Le-Maout
  5. Sudakar Anvitha
  6. Guillaume Salbreux
  7. Frank Jülicher
  8. Mandar M Inamdar  Is a corresponding author
  9. Daniel Riveline  Is a corresponding author
  1. Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, France
  2. Indian Institute of Technology Bombay, India
  3. The Francis Crick Institute, United Kingdom
  4. Max Planck Institute for the Physics of Complex Systems, Germany
Research Article
  • Cited 0
  • Views 319
  • Annotations
Cite this article as: eLife 2021;10:e57730 doi: 10.7554/eLife.57730

Abstract

Epithelial tissues of the developing embryos elongate by different mechanisms, such as neighbor exchange, cell elongation, and oriented cell division. Since autonomous tissue self-organization is influenced by external cues such as morphogen gradients or neighboring tissues, it is difficult to distinguish intrinsic from directed tissue behavior. The mesoscopic processes leading to the different mechanisms remain elusive. Here, we study the spontaneous elongation behavior of spreading circular epithelial colonies in vitro. By quantifying deformation kinematics at multiple scales, we report that global elongation happens primarily due to cell elongations, and its direction correlates with the anisotropy of the average cell elongation. By imposing an external time-periodic stretch, the axis of this global symmetry breaking can be modified and elongation occurs primarily due to orientated neighbor exchange. These different behaviors are confirmed using a vertex model for collective cell behavior, providing a framework for understanding autonomous tissue elongation and its origins.

Article and author information

Author details

  1. Jordi Comelles

    Development and stem cells, Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Illkirch CEDEX, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Soumya S S

    Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Linjie Lu

    Development and stem cells, Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Illkirch CEDEX, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Emilie Le-Maout

    Development and stem cells, Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Illkirch CEDEX, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Sudakar Anvitha

    Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, India
    Competing interests
    The authors declare that no competing interests exist.
  6. Guillaume Salbreux

    Theoretical Physics of Biology, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7041-1292
  7. Frank Jülicher

    Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4731-9185
  8. Mandar M Inamdar

    Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai, India
    For correspondence
    minamdar@iitb.ac.in
    Competing interests
    The authors declare that no competing interests exist.
  9. Daniel Riveline

    Development and stem cells, Laboratory of Cell Physics ISIS/IGBMC, CNRS and University of Strasbourg, Illkirch CEDEX, France
    For correspondence
    riveline@unistra.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4632-011X

Funding

Department of Biotechnology, Ministry of Science and Technology, India (BT/06/IYBA/2012)

  • Mandar M Inamdar

Cancer Research UK (FC001317)

  • Guillaume Salbreux

Medical Research Council (FC001317)

  • Guillaume Salbreux

Wellcome Trust (FC001317)

  • Guillaume Salbreux

Centre National de la Recherche Scientifique (ANR-10-LABX-0030-INRT)

  • Guillaume Salbreux
  • Daniel Riveline

Agence Nationale de la Recherche (ANR-10-IDEX-0002-02)

  • Daniel Riveline

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Irene Giardina, Università Sapienza, Italy

Publication history

  1. Received: April 9, 2020
  2. Accepted: December 31, 2020
  3. Accepted Manuscript published: January 4, 2021 (version 1)

Copyright

© 2021, Comelles et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 319
    Page views
  • 66
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Lior Strinkovsky et al.
    Research Article

    Homeostasis in adult tissues relies on the replication dynamics of stem cells, their progenitors and the spatial balance between them. This spatial and kinetic coordination is crucial to the successful maintenance of tissue size and its replenishment with new cells. However, our understanding of the role of cellular replicative lifespan and spatial correlation between cells in shaping tissue integrity is still lacking. We developed a mathematical model for the stochastic spatial dynamics that underlie the rejuvenation of corneal epithelium. Our model takes into account different spatial correlations between cell replication and cell removal. We derive the tradeoffs between replicative lifespan, spatial correlation length, and tissue rejuvenation dynamics. We determine the conditions that allow homeostasis and are consistent with biological timescales, pattern formation, and mutants phenotypes. Our results can be extended to any cellular system in which spatial homeostasis is maintained through cell replication.

    1. Chromosomes and Gene Expression
    2. Physics of Living Systems
    Edward J Banigan, Leonid A Mirny
    Research Advance Updated

    Chromosome compaction is essential for reliable transmission of genetic information. Experiments suggest that ∼1000-fold compaction is driven by condensin complexes that extrude chromatin loops, by progressively collecting chromatin fiber from one or both sides of the complex to form a growing loop. Theory indicates that symmetric two-sided loop extrusion can achieve such compaction, but recent single-molecule studies (Golfier et al., 2020) observed diverse dynamics of condensins that perform one-sided, symmetric two-sided, and asymmetric two-sided extrusion. We use simulations and theory to determine how these molecular properties lead to chromosome compaction. High compaction can be achieved if even a small fraction of condensins have two essential properties: a long residence time and the ability to perform two-sided (not necessarily symmetric) extrusion. In mixtures of condensins I and II, coupling two-sided extrusion and stable chromatin binding by condensin II promotes compaction. These results provide missing connections between single-molecule observations and chromosome-scale organization.