Genome-wide CRISPR screens of oral squamous cell carcinoma reveal fitness genes in the Hippo pathway

  1. Annie Wai Yeeng Chai
  2. Pei San Yee
  3. Stacey Price
  4. Shi Mun Yee
  5. Hui Mei Lee
  6. Vivian KH Tiong
  7. Emanuel Gonçalves
  8. Fiona M Behan
  9. Jessica Bateson
  10. James Gilbert
  11. Aik Choon Tan
  12. Ultan McDermott
  13. Mathew J Garnett
  14. Sok Ching Cheong  Is a corresponding author
  1. Cancer Research Malaysia, Malaysia
  2. Wellcome Trust Sanger Institute, United Kingdom
  3. Wellcome Trust Genome Campus, United Kingdom
  4. Moffitt Cancer Center, United States
  5. AstraZeneca, United Kingdom

Abstract

New therapeutic targets for oral squamous cell carcinoma (OSCC) are urgently needed. We conducted genome-wide CRISPR-Cas9 screens in 21 OSCC cell lines, primarily derived from Asians, to identify genetic vulnerabilities that can be explored as therapeutic targets. We identify known and novel fitness genes and demonstrate that many previously identified OSCC-related cancer genes are non-essential and could have limited therapeutic value, while other fitness genes warrant further investigation for their potential as therapeutic targets. We validate a distinctive dependency on YAP1 and WWTR1 of the Hippo pathway, where the lost-of-fitness effect of one paralog can be compensated only in a subset of lines. We also discover that OSCCs with WWTR1 dependency signature are significantly associated with biomarkers of favourable response towards immunotherapy. In summary, we have delineated the genetic vulnerabilities of OSCC, enabling the prioritization of therapeutic targets for further exploration, including the targeting of YAP1 and WWTR1.

Data availability

All main data generated or analysed during this study are included in the manuscript and supplementary files. Source data files for each figures and supplements have also been provided.The larger datasets of CRISPR screens, WES and RNA-sequencing output are available from Figshare (https://doi.org/10.6084/m9.figshare.11919753).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Annie Wai Yeeng Chai

    Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8015-6050
  2. Pei San Yee

    Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
  3. Stacey Price

    Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Shi Mun Yee

    Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
  5. Hui Mei Lee

    Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
  6. Vivian KH Tiong

    Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
  7. Emanuel Gonçalves

    Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9967-5205
  8. Fiona M Behan

    Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Jessica Bateson

    Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. James Gilbert

    Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Aik Choon Tan

    Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Ultan McDermott

    Oncology R&D, AstraZeneca, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Mathew J Garnett

    Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Sok Ching Cheong

    Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya, Malaysia
    For correspondence
    sokching.cheong@cancerresearch.my
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6765-9542

Funding

Medical Research Council (MR/P013457/1)

  • Ultan McDermott
  • Mathew J Garnett
  • Sok Ching Cheong

Wellcome Trust (206194)

  • Stacey Price
  • Emanuel Gonçalves
  • Fiona M Behan
  • Jessica Bateson
  • James Gilbert
  • Mathew J Garnett

Cancer Research Malaysia (-)

  • Annie Wai Yeeng Chai
  • Pei San Yee
  • Shi Mun Yee
  • Hui Mei Lee
  • Vivian KH Tiong
  • Sok Ching Cheong

This work was directly supported by the Newton-Ungku Omar Fund and the Medical Research Council, United Kingdom (MR/P013457/1). Authors in S.C.C.'s group were supported by sponsors of Cancer Research Malaysia; Authors in M.J.G's group were supported by Wellcome. Other funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Chai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 553
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Annie Wai Yeeng Chai
  2. Pei San Yee
  3. Stacey Price
  4. Shi Mun Yee
  5. Hui Mei Lee
  6. Vivian KH Tiong
  7. Emanuel Gonçalves
  8. Fiona M Behan
  9. Jessica Bateson
  10. James Gilbert
  11. Aik Choon Tan
  12. Ultan McDermott
  13. Mathew J Garnett
  14. Sok Ching Cheong
(2020)
Genome-wide CRISPR screens of oral squamous cell carcinoma reveal fitness genes in the Hippo pathway
eLife 9:e57761.
https://doi.org/10.7554/eLife.57761

Share this article

https://doi.org/10.7554/eLife.57761

Further reading

    1. Cancer Biology
    Han V Han, Richard Efem ... Richard Z Lin
    Research Article

    Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca−/− KPC (named αKO) cancer cells induces clonal enrichment of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression, and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally enriched CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally enriched T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.

    1. Cancer Biology
    2. Immunology and Inflammation
    Almudena Mendez-Perez, Andres M Acosta-Moreno ... Esteban Veiga
    Short Report

    In this study, we present a proof-of-concept classical vaccination experiment that validates the in silico identification of tumor neoantigens (TNAs) using a machine learning-based platform called NAP-CNB. Unlike other TNA predictors, NAP-CNB leverages RNA-seq data to consider the relative expression of neoantigens in tumors. Our experiments show the efficacy of NAP-CNB. Predicted TNAs elicited potent antitumor responses in mice following classical vaccination protocols. Notably, optimal antitumor activity was observed when targeting the antigen with higher expression in the tumor, which was not the most immunogenic. Additionally, the vaccination combining different neoantigens resulted in vastly improved responses compared to each one individually, showing the worth of multiantigen-based approaches. These findings validate NAP-CNB as an innovative TNA identification platform and make a substantial contribution to advancing the next generation of personalized immunotherapies.