Genome-wide CRISPR screens of oral squamous cell carcinoma reveal fitness genes in the Hippo pathway

  1. Annie Wai Yeeng Chai
  2. Pei San Yee
  3. Stacey Price
  4. Shi Mun Yee
  5. Hui Mei Lee
  6. Vivian KH Tiong
  7. Emanuel Gonçalves
  8. Fiona M Behan
  9. Jessica Bateson
  10. James Gilbert
  11. Aik Choon Tan
  12. Ultan McDermott
  13. Mathew J Garnett
  14. Sok Ching Cheong  Is a corresponding author
  1. Cancer Research Malaysia, Malaysia
  2. Wellcome Trust Sanger Institute, United Kingdom
  3. Wellcome Trust Genome Campus, United Kingdom
  4. Moffitt Cancer Center, United States
  5. AstraZeneca, United Kingdom

Abstract

New therapeutic targets for oral squamous cell carcinoma (OSCC) are urgently needed. We conducted genome-wide CRISPR-Cas9 screens in 21 OSCC cell lines, primarily derived from Asians, to identify genetic vulnerabilities that can be explored as therapeutic targets. We identify known and novel fitness genes and demonstrate that many previously identified OSCC-related cancer genes are non-essential and could have limited therapeutic value, while other fitness genes warrant further investigation for their potential as therapeutic targets. We validate a distinctive dependency on YAP1 and WWTR1 of the Hippo pathway, where the lost-of-fitness effect of one paralog can be compensated only in a subset of lines. We also discover that OSCCs with WWTR1 dependency signature are significantly associated with biomarkers of favourable response towards immunotherapy. In summary, we have delineated the genetic vulnerabilities of OSCC, enabling the prioritization of therapeutic targets for further exploration, including the targeting of YAP1 and WWTR1.

Data availability

All main data generated or analysed during this study are included in the manuscript and supplementary files. Source data files for each figures and supplements have also been provided.The larger datasets of CRISPR screens, WES and RNA-sequencing output are available from Figshare (https://doi.org/10.6084/m9.figshare.11919753).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Annie Wai Yeeng Chai

    Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8015-6050
  2. Pei San Yee

    Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
  3. Stacey Price

    Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Shi Mun Yee

    Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
  5. Hui Mei Lee

    Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
  6. Vivian KH Tiong

    Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya, Malaysia
    Competing interests
    The authors declare that no competing interests exist.
  7. Emanuel Gonçalves

    Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9967-5205
  8. Fiona M Behan

    Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Jessica Bateson

    Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. James Gilbert

    Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Aik Choon Tan

    Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Ultan McDermott

    Oncology R&D, AstraZeneca, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Mathew J Garnett

    Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  14. Sok Ching Cheong

    Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya, Malaysia
    For correspondence
    sokching.cheong@cancerresearch.my
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6765-9542

Funding

Medical Research Council (MR/P013457/1)

  • Ultan McDermott
  • Mathew J Garnett
  • Sok Ching Cheong

Wellcome Trust (206194)

  • Stacey Price
  • Emanuel Gonçalves
  • Fiona M Behan
  • Jessica Bateson
  • James Gilbert
  • Mathew J Garnett

Cancer Research Malaysia (-)

  • Annie Wai Yeeng Chai
  • Pei San Yee
  • Shi Mun Yee
  • Hui Mei Lee
  • Vivian KH Tiong
  • Sok Ching Cheong

This work was directly supported by the Newton-Ungku Omar Fund and the Medical Research Council, United Kingdom (MR/P013457/1). Authors in S.C.C.'s group were supported by sponsors of Cancer Research Malaysia; Authors in M.J.G's group were supported by Wellcome. Other funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Chai et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,352
    views
  • 532
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Annie Wai Yeeng Chai
  2. Pei San Yee
  3. Stacey Price
  4. Shi Mun Yee
  5. Hui Mei Lee
  6. Vivian KH Tiong
  7. Emanuel Gonçalves
  8. Fiona M Behan
  9. Jessica Bateson
  10. James Gilbert
  11. Aik Choon Tan
  12. Ultan McDermott
  13. Mathew J Garnett
  14. Sok Ching Cheong
(2020)
Genome-wide CRISPR screens of oral squamous cell carcinoma reveal fitness genes in the Hippo pathway
eLife 9:e57761.
https://doi.org/10.7554/eLife.57761

Share this article

https://doi.org/10.7554/eLife.57761

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    Jae Hun Shin, Jooyoung Park ... Alfred LM Bothwell
    Research Article

    Metastasis is the leading cause of cancer-related mortality. Paneth cells provide stem cell niche factors in homeostatic conditions, but the underlying mechanisms of cancer stem cell niche development are unclear. Here, we report that Dickkopf-2 (DKK2) is essential for the generation of cancer cells with Paneth cell properties during colon cancer metastasis. Splenic injection of Dkk2 knockout (KO) cancer organoids into C57BL/6 mice resulted in a significant reduction of liver metastases. Transcriptome analysis showed reduction of Paneth cell markers such as lysozymes in KO organoids. Single-cell RNA sequencing analyses of murine metastasized colon cancer cells and patient samples identified the presence of lysozyme positive cells with Paneth cell properties including enhanced glycolysis. Further analyses of transcriptome and chromatin accessibility suggested hepatocyte nuclear factor 4 alpha (HNF4A) as a downstream target of DKK2. Chromatin immunoprecipitation followed by sequencing analysis revealed that HNF4A binds to the promoter region of Sox9, a well-known transcription factor for Paneth cell differentiation. In the liver metastatic foci, DKK2 knockout rescued HNF4A protein levels followed by reduction of lysozyme positive cancer cells. Taken together, DKK2-mediated reduction of HNF4A protein promotes the generation of lysozyme positive cancer cells with Paneth cell properties in the metastasized colon cancers.