Breakage of the oligomeric CaMKII hub by the regulatory segment of the kinase

  1. Deepti Karandur
  2. Moitrayee Bhattacharyya
  3. Zijie Xia
  4. Young Kwang Lee
  5. Serena Muratcioglu
  6. Darren McAffee
  7. Ethan D McSpadden
  8. Baiyu Qiu
  9. Jay T Groves
  10. Evan R Williams  Is a corresponding author
  11. John Kuriyan  Is a corresponding author
  1. Howard Hughes Medical Institute, University of California, Berkeley, United States
  2. University of California, Berkeley, United States
  3. San Diego State University, United States

Abstract

Ca2+/calmodulin dependent protein kinase II (CaMKII) is an oligomeric enzyme with crucial roles in neuronal signaling and cardiac function. Previously, we showed that activation of CaMKII triggers the exchange of subunits between holoenzymes, potentially increasing the spread of the active state (Stratton et al. 2014; Bhattacharyya et al. 2016). Using mass spectrometry, we show now that unphosphorylated and phosphorylated peptides derived from the CaMKII-α regulatory segment bind to the CaMKII-α hub and break it into smaller oligomers. Molecular dynamics simulations show that the regulatory segments dock spontaneously at the interface between hub subunits, trapping large fluctuations in hub structure. Single-molecule fluorescence intensity analysis of CaMKII-α expressed in mammalian cells shows that activation of CaMKII-α results in the destabilization of the holoenzyme. Our results suggest that release of the regulatory segment by activation and phosphorylation allows it to destabilize the hub, producing smaller assemblies that might reassemble to form new holoenzymes.

Data availability

Molecular dynamics simulation trajectories are available at Pittsburg Supercomputing Center's data storage facility and are accessible at the following link: https://psc.edu/anton-project-summaries?id=3071&pid=35. Mass spectrometry data (Figure 2-4) is available via the MassIVE database under identifier MSV000086103

The following data sets were generated

Article and author information

Author details

  1. Deepti Karandur

    Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6949-6337
  2. Moitrayee Bhattacharyya

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2168-1541
  3. Zijie Xia

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  4. Young Kwang Lee

    Department of Molecular and Cell Biology, San Diego State University, San Diego, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0056-6357
  5. Serena Muratcioglu

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Darren McAffee

    Department of Molecular and Cell Biology, Department of Chemistry, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Ethan D McSpadden

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. Baiyu Qiu

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  9. Jay T Groves

    QB3, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  10. Evan R Williams

    Department of Chemistry, University of California, Berkeley, Berkeley, United States
    For correspondence
    erw@berkeley.edu
    Competing interests
    No competing interests declared.
  11. John Kuriyan

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jkuriyan@mac.com
    Competing interests
    John Kuriyan, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4414-5477

Funding

National Institute of General Medical Sciences (K99 GM 126145)

  • Moitrayee Bhattacharyya

National Science Foundation (CHE-1609866)

  • Zijie Xia

National Science Foundation (CHE-1609866)

  • Evan R Williams

Howard Hughes Medical Institute

  • John Kuriyan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Karandur et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,154
    views
  • 287
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Deepti Karandur
  2. Moitrayee Bhattacharyya
  3. Zijie Xia
  4. Young Kwang Lee
  5. Serena Muratcioglu
  6. Darren McAffee
  7. Ethan D McSpadden
  8. Baiyu Qiu
  9. Jay T Groves
  10. Evan R Williams
  11. John Kuriyan
(2020)
Breakage of the oligomeric CaMKII hub by the regulatory segment of the kinase
eLife 9:e57784.
https://doi.org/10.7554/eLife.57784

Share this article

https://doi.org/10.7554/eLife.57784

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark LaBarge
    Research Article

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Gaetan De Waele, Gerben Menschaert, Willem Waegeman
    Research Article

    Timely and effective use of antimicrobial drugs can improve patient outcomes, as well as help safeguard against resistance development. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used in clinical diagnostics for rapid species identification. Mining additional data from said spectra in the form of antimicrobial resistance (AMR) profiles is, therefore, highly promising. Such AMR profiles could serve as a drop-in solution for drastically improving treatment efficiency, effectiveness, and costs. This study endeavors to develop the first machine learning models capable of predicting AMR profiles for the whole repertoire of species and drugs encountered in clinical microbiology. The resulting models can be interpreted as drug recommender systems for infectious diseases. We find that our dual-branch method delivers considerably higher performance compared to previous approaches. In addition, experiments show that the models can be efficiently fine-tuned to data from other clinical laboratories. MALDI-TOF-based AMR recommender systems can, hence, greatly extend the value of MALDI-TOF MS for clinical diagnostics. All code supporting this study is distributed on PyPI and is packaged at https://github.com/gdewael/maldi-nn.