External location of touch is constructed post-hoc based on limb choice

  1. Femke Maij
  2. Christian Seegelke
  3. W Pieter Medendorp
  4. Tobias Heed  Is a corresponding author
  1. Radboud University, Netherlands
  2. Bielefeld University, Germany

Abstract

When humans indicate on which hand a tactile stimulus occurred, they often err when their hands are crossed. This finding seemingly supports the view that the automatically determined touch location in external space affects limb assignment: the crossed right hand is localized in left space, and this conflict presumably provokes hand assignment errors. Here, participants judged on which hand the first of two stimuli, presented during a bimanual movement, had occurred, and then indicated its external location by a reach-to-point movement. When participants incorrectly chose the hand stimulated second, they pointed to where that hand had been at the correct, first time point, though no stimulus had occurred at that location. This behavior suggests that stimulus localization depended on hand assignment, not vice versa. It is, thus, incompatible with the notion of automatic computation of external stimulus location upon occurrence. Instead, humans construct external touch location post-hoc and on demand.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data and Matlab/R analysis files have been provided for all data and data figures at the Open Science Framework (https://osf.io/ybxn5/).

Article and author information

Author details

  1. Femke Maij

    Donders Institute for Brain, Cognition, and Behavior, Centre for Cognition, Radboud University, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  2. Christian Seegelke

    Faculty of Psychology & Sports Science, Bielefeld University, Bielefeld, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9624-6395
  3. W Pieter Medendorp

    Donders Institute for Brain, Cognition and Behavior, Centre for Cognition (DCC), Radboud University, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9615-4220
  4. Tobias Heed

    Faculty of Psychology and Sports Science and Excellence Cluster Cognitive Interaction Technology (Citec), Bielefeld University, Bielefeld, Germany
    For correspondence
    tobias.heed@uni-bielefeld.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5632-6091

Funding

Deutsche Forschungsgemeinschaft (He 6368/1-1)

  • Tobias Heed

Nederlandse Organisatie voor Wetenschappelijk Onderzoek (EU-ERC-283567)

  • W Pieter Medendorp

H2020 European Research Council (NWO-VICI: 453-11-001)

  • W Pieter Medendorp

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. J Andrew Pruszynski, Western University, Canada

Ethics

Human subjects: The study was part of a research program approved by the ethics committee of the German Psychological Society (DGPs), advisory opinions TB 10_2011 and TB_10_2011_Add 082013. Experiment 2, which was run at a different university after the move of the last author, was again approved by Bielefeld University's ethics committee, ref.nr. 2017-114. Twelve right-handed participants (aged 19-31 years, 7 female) gave informed consent to take part in the experiment.

Version history

  1. Received: April 14, 2020
  2. Accepted: September 18, 2020
  3. Accepted Manuscript published: September 18, 2020 (version 1)
  4. Version of Record published: October 15, 2020 (version 2)

Copyright

© 2020, Maij et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,015
    views
  • 133
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Femke Maij
  2. Christian Seegelke
  3. W Pieter Medendorp
  4. Tobias Heed
(2020)
External location of touch is constructed post-hoc based on limb choice
eLife 9:e57804.
https://doi.org/10.7554/eLife.57804

Share this article

https://doi.org/10.7554/eLife.57804

Further reading

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.

    1. Neuroscience
    Baba Yogesh, Georg B Keller
    Research Article

    Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.