Pleiotropic mutations can rapidly evolve to directly benefit self and cooperative partner despite unfavorable conditions

  1. Samuel Frederick Mock Hart
  2. Chi-Chun Chen
  3. Wenying Shou  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States
  2. University College London, United Kingdom

Abstract

Cooperation, paying a cost to benefit others, is widespread. Cooperation can be promoted by pleiotropic 'win-win' mutations which directly benefit self ('self-serving') and partner ('partner-serving'). Previously, we showed that partner-serving should be defined as increased benefit supply rate per intake benefit (Hart & Pineda et al., 2019). Here, we report that win-win mutations can rapidly evolve even under conditions unfavorable for cooperation. Specifically, in a well-mixed environment we evolved engineered yeast cooperative communities where two strains exchanged costly metabolites lysine and hypoxanthine. Among cells that consumed lysine and released hypoxanthine, ecm21 mutations repeatedly arose. ecm21 is self-serving, improving self's growth rate in limiting lysine. ecm21 is also partner-serving, increasing hypoxanthine release rate per lysine consumption and the steady state growth rate of partner. ecm21 also arose in monocultures evolving in lysine-limited chemostats. Thus, even without any history of cooperation or pressure to maintain cooperation, pleiotropic win-win mutations may readily evolve.

Data availability

All data in this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2-4.

Article and author information

Author details

  1. Samuel Frederick Mock Hart

    Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5068-2199
  2. Chi-Chun Chen

    Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Wenying Shou

    Genetics, Evolution and Environment, University College London, London, United Kingdom
    For correspondence
    w.shou@ucl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5693-381X

Funding

National Institutes of Health (DP2 OD006498-01)

  • Samuel Frederick Mock Hart
  • Chi-Chun Chen
  • Wenying Shou

National Institutes of Health (R01GM124128)

  • Samuel Frederick Mock Hart
  • Wenying Shou

W.M. Keck Foundation (Distinguished Young Scholars)

  • Chi-Chun Chen
  • Wenying Shou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Hart et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,573
    views
  • 204
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Samuel Frederick Mock Hart
  2. Chi-Chun Chen
  3. Wenying Shou
(2021)
Pleiotropic mutations can rapidly evolve to directly benefit self and cooperative partner despite unfavorable conditions
eLife 10:e57838.
https://doi.org/10.7554/eLife.57838

Share this article

https://doi.org/10.7554/eLife.57838

Further reading

    1. Ecology
    Hong-Fei Li, Bao Dong ... Hong-Bo Jiang
    Research Article

    Behavioral strategies for foraging and reproduction in the oriental fruit fly (Bactrocera dorsalis) are alternative options for resource allocation and are controlled by neuropeptides. Here, we show that the behavioral switch between foraging and reproduction is associated with changes in antennal sensitivity. Starved flies became more sensitive to food odors while suppressing their response to opposite-sex pheromones. The gene encoding sulfakinin receptor 1 (SkR1) was significantly upregulated in the antennae of starved flies, so we tested the behavioral phenotypes of null mutants for the genes encoding the receptor (skr1–/–) and its ligand sulfakinin (sk–/–). In both knockout lines, the antennal responses shifted to mating mode even when flies were starved. This suggests that sulfakinin signaling via SkR1 promotes foraging while suppressing mating. Further analysis of the mutant flies revealed that sets of odorant receptor (OR) genes were differentially expressed. Functional characterization of the differentially expressed ORs suggested that sulfakinin directly suppresses the expression of ORs that respond to opposite-sex hormones while enhancing the expression of ORs that detect food volatiles. We conclude that sulfakinin signaling via SkR1, modulating OR expressions and leading to altered antenna sensitivities, is an important component in starvation-dependent behavioral change.

    1. Ecology
    Lukas Hüppe, Dominik Bahlburg ... Bettina Meyer
    Research Article

    Antarctic krill is a species with fundamental importance for the Southern Ocean ecosystem. Their large biomass and synchronized movements, like diel vertical migration (DVM), significantly impact ecosystem structure and the biological carbon pump. Despite decades of research, the mechanistic basis of DVM remains unclear. Circadian clocks help organisms anticipate daily environmental changes, optimizing adaptation. In this study, we used a recently developed activity monitor to record swimming activity of individual, wild-caught krill under various light conditions and across different seasons. Our data demonstrate how the krill circadian clock, in combination with light, drives a distinct bimodal pattern of swimming activity, which could facilitate ecologically important behavioral patterns, such as DVM. Rapid damping and flexible synchronization of krill activity indicate that the krill clock is adapted to a life at high latitudes and seasonal activity recordings suggest a clock-based mechanism for the timing of seasonal processes. Our findings advance our understanding of biological timing and high-latitude adaptation in this key species.