Neuronal hyperexcitability is a DLK-dependent trigger of Herpes Simplex Virus reactivation that can be induced by IL-1

Abstract

Herpes Simplex Virus-1 (HSV-1) establishes a latent infection in neurons and periodically reactivates to cause disease. The stimuli that trigger HSV-1 reactivation have not been fully elucidated. We demonstrate HSV-1 reactivation from latently infected mouse neurons induced by forskolin requires neuronal excitation. Stimuli that directly induce neurons to become hyperexcitable also induced HSV-1 reactivation. Forskolin-induced reactivation was dependent on the neuronal pathway of DLK/JNK activation and included an initial wave of viral gene expression that was independent of histone demethylase activity and linked to histone phosphorylation. IL-1β is released under conditions of stress, fever and UV exposure of the epidermis; all known triggers of clinical HSV reactivation. We found that IL-1β induced histone phosphorylation and increased the excitation in sympathetic neurons. Importantly, IL-1β triggered HSV-1 reactivation, which was dependent on DLK and neuronal excitability. Thus, HSV-1 co-opts an innate immune pathway resulting from IL-1 stimulation of neurons to induce reactivation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Sean R Cuddy

    Microbiology, Immunology and Cancer, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Austin R Schinlever

    Microbiology, Immunology and Cancer, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3401-0904
  3. Sara Dochnal

    Microbiology, Immunology and Cancer, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Philip V Seegren

    Pharmacology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jon Suzich

    Microbiology, Immunology and Cancer, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6087-2893
  6. Parijat Kundu

    Microbiology, Immunology and Cancer, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1944-4579
  7. Taylor K Downs

    Pharmacology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Mina Farah

    Microbiology, Immunology and Cancer, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Bimal N Desai

    Pharmacology, University of Virginia, Charlottesville, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3928-5854
  10. Chris Boutell

    Centre for Virus Research, MRC-University of Glasgow, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Anna R Cliffe

    Microbiology, Immunology and Cancer, University of Virginia, Charlottesville, United States
    For correspondence
    cliffe@virginia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1136-5171

Funding

National Institute of Neurological Disorders and Stroke (R01NS105630)

  • Anna R Cliffe

National Institute of Allergy and Infectious Diseases (T32AI007046)

  • Sean R Cuddy
  • Jon Suzich

National Institute of General Medical Sciences (T32GM008136)

  • Sara Dochnal

National Institute of General Medical Sciences (T32GM007267)

  • Jon Suzich

National Eye Institute (F30EY030397)

  • Jon Suzich

Medical Research Council (MC_UU_12014/5)

  • Chris Boutell

National Institute of General Medical Sciences (GM108989)

  • Bimal N Desai

National Institute of General Medical Sciences (GM007055)

  • Philip V Seegren

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Melanie M Brinkmann, Technische Universität Braunschweig, Germany

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Rodent handling and husbandry were carried out under animal protocols approved by the Animal Care and Use Committee of the University of Virginia (UVA). All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#4134) of the University of Virginia.

Version history

  1. Received: April 17, 2020
  2. Accepted: December 14, 2020
  3. Accepted Manuscript published: December 22, 2020 (version 1)
  4. Accepted Manuscript updated: December 24, 2020 (version 2)
  5. Version of Record published: December 30, 2020 (version 3)

Copyright

© 2020, Cuddy et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,755
    views
  • 324
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sean R Cuddy
  2. Austin R Schinlever
  3. Sara Dochnal
  4. Philip V Seegren
  5. Jon Suzich
  6. Parijat Kundu
  7. Taylor K Downs
  8. Mina Farah
  9. Bimal N Desai
  10. Chris Boutell
  11. Anna R Cliffe
(2020)
Neuronal hyperexcitability is a DLK-dependent trigger of Herpes Simplex Virus reactivation that can be induced by IL-1
eLife 9:e58037.
https://doi.org/10.7554/eLife.58037

Share this article

https://doi.org/10.7554/eLife.58037

Further reading

    1. Microbiology and Infectious Disease
    Michael D Sacco, Lauren R Hammond ... Yu Chen
    Research Article Updated

    In the Firmicutes phylum, GpsB is a membrane associated protein that coordinates peptidoglycan synthesis with cell growth and division. Although GpsB has been studied in several bacteria, the structure, function, and interactome of Staphylococcus aureus GpsB is largely uncharacterized. To address this knowledge gap, we solved the crystal structure of the N-terminal domain of S. aureus GpsB, which adopts an atypical, asymmetric dimer, and demonstrates major conformational flexibility that can be mapped to a hinge region formed by a three-residue insertion exclusive to Staphylococci. When this three-residue insertion is excised, its thermal stability increases, and the mutant no longer produces a previously reported lethal phenotype when overexpressed in Bacillus subtilis. In S. aureus, we show that these hinge mutants are less functional and speculate that the conformational flexibility imparted by the hinge region may serve as a dynamic switch to fine-tune the function of the GpsB complex and/or to promote interaction with its various partners. Furthermore, we provide the first biochemical, biophysical, and crystallographic evidence that the N-terminal domain of GpsB binds not only PBP4, but also FtsZ, through a conserved recognition motif located on their C-termini, thus coupling peptidoglycan synthesis to cell division. Taken together, the unique structure of S. aureus GpsB and its direct interaction with FtsZ/PBP4 provide deeper insight into the central role of GpsB in S. aureus cell division.

    1. Microbiology and Infectious Disease
    Magdalena Podkowik, Andrew I Perault ... Bo Shopsin
    Research Article

    The agr quorum-sensing system links Staphylococcus aureus metabolism to virulence, in part by increasing bacterial survival during exposure to lethal concentrations of H2O2, a crucial host defense against S. aureus. We now report that protection by agr surprisingly extends beyond post-exponential growth to the exit from stationary phase when the agr system is no longer turned on. Thus, agr can be considered a constitutive protective factor. Deletion of agr resulted in decreased ATP levels and growth, despite increased rates of respiration or fermentation at appropriate oxygen tensions, suggesting that Δagr cells undergo a shift towards a hyperactive metabolic state in response to diminished metabolic efficiency. As expected from increased respiratory gene expression, reactive oxygen species (ROS) accumulated more in the agr mutant than in wild-type cells, thereby explaining elevated susceptibility of Δagr strains to lethal H2O2 doses. Increased survival of wild-type agr cells during H2O2 exposure required sodA, which detoxifies superoxide. Additionally, pretreatment of S. aureus with respiration-reducing menadione protected Δagr cells from killing by H2O2. Thus, genetic deletion and pharmacologic experiments indicate that agr helps control endogenous ROS, thereby providing resilience against exogenous ROS. The long-lived ‘memory’ of agr-mediated protection, which is uncoupled from agr activation kinetics, increased hematogenous dissemination to certain tissues during sepsis in ROS-producing, wild-type mice but not ROS-deficient (Cybb−/−) mice. These results demonstrate the importance of protection that anticipates impending ROS-mediated immune attack. The ubiquity of quorum sensing suggests that it protects many bacterial species from oxidative damage.