Methotrexate attenuates vascular inflammation through an adenosine-microRNA dependent pathway

  1. Dafeng Yang
  2. Stefan Haemmig
  3. Haoyang Zhou
  4. Daniel Pérez-Cremades
  5. Xinghui Sun
  6. Lei Chen
  7. Jie Li
  8. Jorge Haneo-Mejia
  9. Tianlun Yang
  10. Ivana Hollan
  11. Mark W Feinberg  Is a corresponding author
  1. Brigham and Women's Hospital/Harvard Medical School, United States
  2. Central South University, China
  3. Xiangya Hospital, Central South University, China
  4. University of Pennsylvania, United States

Abstract

Endothelial cell (EC) activation is an early hallmark in the pathogenesis of chronic vascular diseases. MicroRNA-181b (MiR-181b) is an important anti-inflammatory mediator in the vascular endothelium affecting endotoxemia, atherosclerosis, and insulin resistance. Herein, we identify that the drug methotrexate (MTX) and its downstream metabolite adenosine exert anti-inflammatory effects in the vascular endothelium by targeting and activating MiR-181b expression. Both systemic and endothelial-specific MiR-181a2b2-deficient mice develop vascular inflammation, white adipose tissue (WAT) inflammation, and insulin resistance in a diet-induced obesity model. Moreover, MTX attenuated diet-induced WAT inflammation, insulin resistance, and EC activation in a MiR-181a2b2-dependent manner. Mechanistically, MTX attenuated cytokine-induced EC activation through a unique adenosine-adenosine receptor A3-SMAD3/4-MiR-181b signaling cascade. These findings establish an essential role of endothelial MiR-181b in controlling vascular inflammation and that restoring MiR-181b in ECs by high dose MTX or adenosine signaling may provide a potential therapeutic opportunity for anti-inflammatory therapy.

Data availability

Source data files have been provided for Figures 1 -2. RNA-Seq data has been made accessible.

Article and author information

Author details

  1. Dafeng Yang

    Medicine/Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Stefan Haemmig

    Medicine/Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Haoyang Zhou

    Cardiovascular, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Pérez-Cremades

    Medicine, Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xinghui Sun

    Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lei Chen

    Cardiology, Xiangya Hospital, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jie Li

    Medicine/Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jorge Haneo-Mejia

    Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Tianlun Yang

    Cardiology, Xiangya Hospital, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Ivana Hollan

    Medicine/Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mark W Feinberg

    Medicine/Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    For correspondence
    mfeinberg@bwh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9523-3859

Funding

National Institutes of Health (HL115141)

  • Mark W Feinberg

National Institutes of Health (HL134849)

  • Mark W Feinberg

American Heart Association (18SFRN33900144)

  • Mark W Feinberg

American Heart Association (18POST34030395)

  • Stefan Haemmig

Falk Foundation

  • Mark W Feinberg

National Natural Science Foundation of China

  • Tianlun Yang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Peter Tontonoz, University of California, Los Angeles, United States

Ethics

Animal experimentation: All mice were maintained under SPF conditions at an American Association for the Accreditation of Laboratory Animal Care-accredited animal facility at the Brigham and Women's Hospital (protocol #2016N000182). All animal protocols were approved by the Institutional Animal Care and Use Committee at Harvard Medical School, Boston, MA and conducted in accordance with the National Institutes of Health Guide for Care and Use of Laboratory Animals.

Version history

  1. Received: April 20, 2020
  2. Accepted: December 31, 2020
  3. Accepted Manuscript published: January 8, 2021 (version 1)
  4. Version of Record published: January 27, 2021 (version 2)

Copyright

© 2021, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,589
    Page views
  • 166
    Downloads
  • 9
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dafeng Yang
  2. Stefan Haemmig
  3. Haoyang Zhou
  4. Daniel Pérez-Cremades
  5. Xinghui Sun
  6. Lei Chen
  7. Jie Li
  8. Jorge Haneo-Mejia
  9. Tianlun Yang
  10. Ivana Hollan
  11. Mark W Feinberg
(2021)
Methotrexate attenuates vascular inflammation through an adenosine-microRNA dependent pathway
eLife 10:e58064.
https://doi.org/10.7554/eLife.58064

Share this article

https://doi.org/10.7554/eLife.58064

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yuting Zhang, Min Zhang ... Guojiang Chen
    Research Article

    Marburg virus (MARV) is one of the filovirus species that cause deadly hemorrhagic fever in humans, with mortality rates up to 90%. Neutralizing antibodies represent ideal candidates to prevent or treat virus disease. However, no antibody has been approved for MARV treatment to date. In this study, we identified a novel human antibody named AF-03 that targeted MARV glycoprotein (GP). AF-03 possessed a high binding affinity to MARV GP and showed neutralizing and protective activities against the pseudotyped MARV in vitro and in vivo. Epitope identification, including molecular docking and experiment-based analysis of mutated species, revealed that AF-03 recognized the Niemann-Pick C1 (NPC1) binding domain within GP1. Interestingly, we found the neutralizing activity of AF-03 to pseudotyped Ebola viruses (EBOV, SUDV, and BDBV) harboring cleaved GP instead of full-length GP. Furthermore, NPC2-fused AF-03 exhibited neutralizing activity to several filovirus species and EBOV mutants via binding to CI-MPR. In conclusion, this work demonstrates that AF-03 represents a promising therapeutic cargo for filovirus-caused disease.