Methotrexate attenuates vascular inflammation through an adenosine-microRNA dependent pathway

  1. Dafeng Yang
  2. Stefan Haemmig
  3. Haoyang Zhou
  4. Daniel Pérez-Cremades
  5. Xinghui Sun
  6. Lei Chen
  7. Jie Li
  8. Jorge Haneo-Mejia
  9. Tianlun Yang
  10. Ivana Hollan
  11. Mark W Feinberg  Is a corresponding author
  1. Brigham and Women's Hospital/Harvard Medical School, United States
  2. Central South University, China
  3. Xiangya Hospital, Central South University, China
  4. University of Pennsylvania, United States

Abstract

Endothelial cell (EC) activation is an early hallmark in the pathogenesis of chronic vascular diseases. MicroRNA-181b (MiR-181b) is an important anti-inflammatory mediator in the vascular endothelium affecting endotoxemia, atherosclerosis, and insulin resistance. Herein, we identify that the drug methotrexate (MTX) and its downstream metabolite adenosine exert anti-inflammatory effects in the vascular endothelium by targeting and activating MiR-181b expression. Both systemic and endothelial-specific MiR-181a2b2-deficient mice develop vascular inflammation, white adipose tissue (WAT) inflammation, and insulin resistance in a diet-induced obesity model. Moreover, MTX attenuated diet-induced WAT inflammation, insulin resistance, and EC activation in a MiR-181a2b2-dependent manner. Mechanistically, MTX attenuated cytokine-induced EC activation through a unique adenosine-adenosine receptor A3-SMAD3/4-MiR-181b signaling cascade. These findings establish an essential role of endothelial MiR-181b in controlling vascular inflammation and that restoring MiR-181b in ECs by high dose MTX or adenosine signaling may provide a potential therapeutic opportunity for anti-inflammatory therapy.

Data availability

Source data files have been provided for Figures 1 -2. RNA-Seq data has been made accessible.

Article and author information

Author details

  1. Dafeng Yang

    Medicine/Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Stefan Haemmig

    Medicine/Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Haoyang Zhou

    Cardiovascular, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Pérez-Cremades

    Medicine, Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xinghui Sun

    Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lei Chen

    Cardiology, Xiangya Hospital, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jie Li

    Medicine/Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jorge Haneo-Mejia

    Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Tianlun Yang

    Cardiology, Xiangya Hospital, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Ivana Hollan

    Medicine/Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mark W Feinberg

    Medicine/Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    For correspondence
    mfeinberg@bwh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9523-3859

Funding

National Institutes of Health (HL115141)

  • Mark W Feinberg

National Institutes of Health (HL134849)

  • Mark W Feinberg

American Heart Association (18SFRN33900144)

  • Mark W Feinberg

American Heart Association (18POST34030395)

  • Stefan Haemmig

Falk Foundation

  • Mark W Feinberg

National Natural Science Foundation of China

  • Tianlun Yang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were maintained under SPF conditions at an American Association for the Accreditation of Laboratory Animal Care-accredited animal facility at the Brigham and Women's Hospital (protocol #2016N000182). All animal protocols were approved by the Institutional Animal Care and Use Committee at Harvard Medical School, Boston, MA and conducted in accordance with the National Institutes of Health Guide for Care and Use of Laboratory Animals.

Copyright

© 2021, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,717
    views
  • 175
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dafeng Yang
  2. Stefan Haemmig
  3. Haoyang Zhou
  4. Daniel Pérez-Cremades
  5. Xinghui Sun
  6. Lei Chen
  7. Jie Li
  8. Jorge Haneo-Mejia
  9. Tianlun Yang
  10. Ivana Hollan
  11. Mark W Feinberg
(2021)
Methotrexate attenuates vascular inflammation through an adenosine-microRNA dependent pathway
eLife 10:e58064.
https://doi.org/10.7554/eLife.58064

Share this article

https://doi.org/10.7554/eLife.58064

Further reading

    1. Immunology and Inflammation
    Miki Kume, Hanako Koguchi-Yoshioka ... Rei Watanabe
    Research Article

    Psoriasis is a multifactorial disorder mediated by IL-17-producing T cells, involving immune cells and skin-constituting cells. Semaphorin 4A (Sema4A), an immune semaphorin, is known to take part in T helper type 1/17 differentiation and activation. However, Sema4A is also crucial for maintaining peripheral tissue homeostasis and its involvement in skin remains unknown. Here, we revealed that while Sema4A expression was pronounced in psoriatic blood lymphocytes and monocytes, it was downregulated in the keratinocytes of both psoriatic lesions and non-lesions compared to controls. Imiquimod application induced more severe dermatitis in Sema4A knockout (KO) mice compared to wild-type (WT) mice. The naïve skin of Sema4A KO mice showed increased T cell infiltration and IL-17A expression along with thicker epidermis and distinct cytokeratin expression compared to WT mice, which are hallmarks of psoriatic non-lesions. Analysis of bone marrow chimeric mice suggested that Sema4A expression in keratinocytes plays a regulatory role in imiquimod-induced dermatitis. The epidermis of psoriatic non-lesion and Sema4A KO mice demonstrated mTOR complex 1 upregulation, and the application of mTOR inhibitors reversed the skewed expression of cytokeratins in Sema4A KO mice. Conclusively, Sema4A-mediated signaling cascades can be triggers for psoriasis and targets in the treatment and prevention of psoriasis.

    1. Immunology and Inflammation
    2. Medicine
    Yong Jin, Jiayu Xing ... Qingsheng Yu
    Research Article

    Metabolic abnormalities associated with liver disease have a significant impact on the risk and prognosis of cholecystitis. However, the underlying mechanism remains to be elucidated. Here, we investigated this issue using Wilson’s disease (WD) as a model, which is a genetic disorder characterized by impaired mitochondrial function and copper metabolism. Our retrospective clinical study found that WD patients have a significantly higher incidence of cholecystitis and a poorer prognosis. The hepatic immune cell landscape using single-cell RNA sequencing showed that the tissue immune microenvironment is altered in WD, mainly a major change in the constitution and function of the innate immune system. Exhaustion of natural killer (NK) cells is the fundamental factor, supported by the upregulated expression of inhibitory receptors and the downregulated expression of cytotoxic molecules, which was verified in clinical samples. Further bioinformatic analysis confirmed a positive correlation between NK cell exhaustion and poor prognosis in cholecystitis and other inflammatory diseases. The study demonstrated dysfunction of liver immune cells triggered by specific metabolic abnormalities in WD, with a focus on the correlation between NK cell exhaustion and poor healing of cholecystitis, providing new insights into the improvement of inflammatory diseases by assessing immune cell function.