Methotrexate attenuates vascular inflammation through an adenosine-microRNA dependent pathway

  1. Dafeng Yang
  2. Stefan Haemmig
  3. Haoyang Zhou
  4. Daniel Pérez-Cremades
  5. Xinghui Sun
  6. Lei Chen
  7. Jie Li
  8. Jorge Haneo-Mejia
  9. Tianlun Yang
  10. Ivana Hollan
  11. Mark W Feinberg  Is a corresponding author
  1. Brigham and Women's Hospital/Harvard Medical School, United States
  2. Central South University, China
  3. Xiangya Hospital, Central South University, China
  4. University of Pennsylvania, United States

Abstract

Endothelial cell (EC) activation is an early hallmark in the pathogenesis of chronic vascular diseases. MicroRNA-181b (MiR-181b) is an important anti-inflammatory mediator in the vascular endothelium affecting endotoxemia, atherosclerosis, and insulin resistance. Herein, we identify that the drug methotrexate (MTX) and its downstream metabolite adenosine exert anti-inflammatory effects in the vascular endothelium by targeting and activating MiR-181b expression. Both systemic and endothelial-specific MiR-181a2b2-deficient mice develop vascular inflammation, white adipose tissue (WAT) inflammation, and insulin resistance in a diet-induced obesity model. Moreover, MTX attenuated diet-induced WAT inflammation, insulin resistance, and EC activation in a MiR-181a2b2-dependent manner. Mechanistically, MTX attenuated cytokine-induced EC activation through a unique adenosine-adenosine receptor A3-SMAD3/4-MiR-181b signaling cascade. These findings establish an essential role of endothelial MiR-181b in controlling vascular inflammation and that restoring MiR-181b in ECs by high dose MTX or adenosine signaling may provide a potential therapeutic opportunity for anti-inflammatory therapy.

Data availability

Source data files have been provided for Figures 1 -2. RNA-Seq data has been made accessible.

Article and author information

Author details

  1. Dafeng Yang

    Medicine/Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Stefan Haemmig

    Medicine/Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Haoyang Zhou

    Cardiovascular, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Daniel Pérez-Cremades

    Medicine, Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Xinghui Sun

    Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Lei Chen

    Cardiology, Xiangya Hospital, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Jie Li

    Medicine/Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jorge Haneo-Mejia

    Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Tianlun Yang

    Cardiology, Xiangya Hospital, Central South University, Changsha, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Ivana Hollan

    Medicine/Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Mark W Feinberg

    Medicine/Cardiology, Brigham and Women's Hospital/Harvard Medical School, Boston, United States
    For correspondence
    mfeinberg@bwh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9523-3859

Funding

National Institutes of Health (HL115141)

  • Mark W Feinberg

National Institutes of Health (HL134849)

  • Mark W Feinberg

American Heart Association (18SFRN33900144)

  • Mark W Feinberg

American Heart Association (18POST34030395)

  • Stefan Haemmig

Falk Foundation

  • Mark W Feinberg

National Natural Science Foundation of China

  • Tianlun Yang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were maintained under SPF conditions at an American Association for the Accreditation of Laboratory Animal Care-accredited animal facility at the Brigham and Women's Hospital (protocol #2016N000182). All animal protocols were approved by the Institutional Animal Care and Use Committee at Harvard Medical School, Boston, MA and conducted in accordance with the National Institutes of Health Guide for Care and Use of Laboratory Animals.

Copyright

© 2021, Yang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,759
    views
  • 180
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dafeng Yang
  2. Stefan Haemmig
  3. Haoyang Zhou
  4. Daniel Pérez-Cremades
  5. Xinghui Sun
  6. Lei Chen
  7. Jie Li
  8. Jorge Haneo-Mejia
  9. Tianlun Yang
  10. Ivana Hollan
  11. Mark W Feinberg
(2021)
Methotrexate attenuates vascular inflammation through an adenosine-microRNA dependent pathway
eLife 10:e58064.
https://doi.org/10.7554/eLife.58064

Share this article

https://doi.org/10.7554/eLife.58064

Further reading

    1. Immunology and Inflammation
    Zhiyan Wang, Nore Ojogun ... Mingfang Lu
    Research Article

    The incidence of metabolic dysfunction-associated steatotic liver disease (MASLD) has been increasing worldwide. Since gut-derived bacterial lipopolysaccharides (LPS) can travel via the portal vein to the liver and play an important role in producing hepatic pathology, it seemed possible that (1) LPS stimulates hepatic cells to accumulate lipid, and (2) inactivating LPS can be preventive. Acyloxyacyl hydrolase (AOAH), the eukaryotic lipase that inactivates LPS and oxidized phospholipids, is produced in the intestine, liver, and other organs. We fed mice either normal chow or a high-fat diet for 28 weeks and found that Aoah-/- mice accumulated more hepatic lipid than did Aoah+/+ mice. In young mice, before increased hepatic fat accumulation was observed, Aoah-/- mouse livers increased their abundance of sterol regulatory element-binding protein 1, and the expression of its target genes that promote fatty acid synthesis. Aoah-/- mice also increased hepatic expression of Cd36 and Fabp3, which mediate fatty acid uptake, and decreased expression of fatty acid-oxidation-related genes Acot2 and Ppara. Our results provide evidence that increasing AOAH abundance in the gut, bloodstream, and/or liver may be an effective strategy for preventing or treating MASLD.

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.