The Role of Rif1 in telomere length regulation is separable from its role in origin firing

  1. Calla B Shubin
  2. Carol W Greider  Is a corresponding author
  1. Johns Hopkins University School of Medicine, United States

Abstract

To examine the established link between DNA replication and telomere length, we tested whether firing of telomeric origins would cause telomere lengthening. We found that RIF1 mutants that block Protein Phosphatase 1 (PP1) binding activated telomeric origins but did not elongate telomeres. In a second approach, we found overexpression of ∆N-Dbf4 and Cdc7 increased DDK activity and activated telomeric origins, yet telomere length was unchanged. We tested a third mechanism to activate origins using the sld3-A mcm5-bob1 mutant that de-regulates the pre-replication complex, and again saw no change in telomere length. Finally, we tested whether mutations in RIF1 that cause telomere elongation would affect origin firing. We found that neither rif1-∆1322 nor rif1HOOK affected firing of telomeric origins. We conclude that telomeric origin firing does not cause telomere elongation, and the role of Rif1 in regulating origin firing is separable from its role in regulating telomere length.

Data availability

Sequencing data have been deposited in NCBI BioProject/SRA PRJNA627739, Copy number sequencing in S. cerevisiae under SRA accession codes: SRR11601580, SRR11601579, SRR11601583, SRR11601584, SRR11601587, SRR11601586, SRR11601594, SRR11601592, SRR11601590, SRR11601589, SRR11601585, SRR11601591, SRR11601582, SRR11601593, SRR11601588, SRR11601581, SRR11601576, SRR11601577, SRR11601578, SRR11601575

The following data sets were generated

Article and author information

Author details

  1. Calla B Shubin

    Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4618-2722
  2. Carol W Greider

    Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    cgreider@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5494-8126

Funding

National Science Foundation (DGE-1746891)

  • Calla B Shubin

National Institute of General Medical Sciences (T32 GM007445)

  • Calla B Shubin

Bloomberg Distinguished Professorship

  • Carol W Greider

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Shubin & Greider

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,762
    views
  • 247
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Calla B Shubin
  2. Carol W Greider
(2020)
The Role of Rif1 in telomere length regulation is separable from its role in origin firing
eLife 9:e58066.
https://doi.org/10.7554/eLife.58066

Share this article

https://doi.org/10.7554/eLife.58066

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Erik Toraason, Alina Salagean ... Diana E Libuda
    Research Article

    The preservation of genome integrity during sperm and egg development is vital for reproductive success. During meiosis, the tumor suppressor BRCA1/BRC-1 and structural maintenance of chromosomes 5/6 (SMC-5/6) complex genetically interact to promote high fidelity DNA double strand break (DSB) repair, but the specific DSB repair outcomes these proteins regulate remain unknown. Using genetic and cytological methods to monitor resolution of DSBs with different repair partners in Caenorhabditis elegans, we demonstrate that both BRC-1 and SMC-5 repress intersister crossover recombination events. Sequencing analysis of conversion tracts from homolog-independent DSB repair events further indicates that BRC-1 regulates intersister/intrachromatid noncrossover conversion tract length. Moreover, we find that BRC-1 specifically inhibits error prone repair of DSBs induced at mid-pachytene. Finally, we reveal functional interactions of BRC-1 and SMC-5/6 in regulating repair pathway engagement: BRC-1 is required for localization of recombinase proteins to DSBs in smc-5 mutants and enhances DSB repair defects in smc-5 mutants by repressing theta-mediated end joining (TMEJ). These results are consistent with a model in which some functions of BRC-1 act upstream of SMC-5/6 to promote recombination and inhibit error-prone DSB repair, while SMC-5/6 acts downstream of BRC-1 to regulate the formation or resolution of recombination intermediates. Taken together, our study illuminates the coordinate interplay of BRC-1 and SMC-5/6 to regulate DSB repair outcomes in the germline.

    1. Chromosomes and Gene Expression
    Xinyang Bing, Wenfan Ke ... James B Jaynes
    Research Article

    Two different models have been proposed to explain how the endpoints of chromatin looped domains (‘TADs’) in eukaryotic chromosomes are determined. In the first, a cohesin complex extrudes a loop until it encounters a boundary element roadblock, generating a stem-loop. In this model, boundaries are functionally autonomous: they have an intrinsic ability to halt the movement of incoming cohesin complexes that is independent of the properties of neighboring boundaries. In the second, loops are generated by boundary:boundary pairing. In this model, boundaries are functionally non-autonomous, and their ability to form a loop depends upon how well they match with their neighbors. Moreover, unlike the loop-extrusion model, pairing interactions can generate both stem-loops and circle-loops. We have used a combination of MicroC to analyze how TADs are organized, and experimental manipulations of the even skipped TAD boundary, homie, to test the predictions of the ‘loop-extrusion’ and the ‘boundary-pairing’ models. Our findings are incompatible with the loop-extrusion model, and instead suggest that the endpoints of TADs in flies are determined by a mechanism in which boundary elements physically pair with their partners, either head-to-head or head-to-tail, with varying degrees of specificity. Although our experiments do not address how partners find each other, the mechanism is unlikely to require loop extrusion.