IER5, a DNA damage response gene, is required for Notch-mediated induction of squamous cell differentiation

  1. Li Pan
  2. Madeleine E Lemieux
  3. Tom Thomas
  4. Julia M Rogers
  5. Colin H Lipper
  6. Winston Lee
  7. Carl Johnson
  8. Lynette M Sholl
  9. Andrew P South
  10. Jarrod A Marto
  11. Guillaume O Adelmant
  12. Stephen C Blacklow
  13. Jon C Aster  Is a corresponding author
  1. Brigham and Women's Hospital, United States
  2. Bioinfo, Canada
  3. Harvard Medical School, United States
  4. Thomas Jefferson University, United States
  5. Dana-Farber Cancer Institute, United States
  6. Dana Farber Cancer Institute, United States
  7. Harvard, United States

Abstract

Notch signaling regulates squamous cell proliferation and differentiation and is frequently disrupted in squamous cell carcinomas, in which Notch is tumor suppressive. Here, we show that conditional activation of Notch in squamous cells activates a context-specific gene expression program through lineage-specific regulatory elements. Among direct Notch target genes are multiple DNA damage response genes, including IER5, which we show is required for Notch-induced differentiation of squamous carcinoma cells and TERT-immortalized keratinocytes. IER5 is epistatic to PPP2R2A, a gene that encodes the PP2A B55a subunit, which we show interacts with IER5 in cells and in purified systems. Thus, Notch and DNA-damage response pathways converge in squamous cells on common genes that promote differentiation, which may serve to eliminate damaged cells from the proliferative pool. We further propose that crosstalk involving Notch and PP2A enables tuning and integration of Notch signaling with other pathways that regulate squamous differentiation.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE156488 and GSE156624

The following data sets were generated

Article and author information

Author details

  1. Li Pan

    Department of Pathology, Brigham and Women's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  2. Madeleine E Lemieux

    Bioinfo, Ontario, Canada
    Competing interests
    No competing interests declared.
  3. Tom Thomas

    Department of Pathology, Brigham and Women's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  4. Julia M Rogers

    Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  5. Colin H Lipper

    Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
    Competing interests
    No competing interests declared.
  6. Winston Lee

    Department of Pathology, Brigham and Women's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  7. Carl Johnson

    Department of Pathology, Brigham and Women's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  8. Lynette M Sholl

    Department of Pathology, Brigham and Women's Hospital, Boston, United States
    Competing interests
    No competing interests declared.
  9. Andrew P South

    Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, United States
    Competing interests
    No competing interests declared.
  10. Jarrod A Marto

    The Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  11. Guillaume O Adelmant

    Oncologic Pathology, Dana Farber Cancer Institute, Boston, United States
    Competing interests
    No competing interests declared.
  12. Stephen C Blacklow

    Department of Biological Chemistry and Molecular Pharmacology, Harvard, Boston, United States
    Competing interests
    Stephen C Blacklow, SCB is on the SAB for Erasca, Inc., receives sponsored research funding from Novartis and Erasca, Inc, and is a consultant for IFM therapeutics and Ayala Pharmaceuticals..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6904-1981
  13. Jon C Aster

    Department of Pathology, Brigham and Women's Hospital, Boston, United States
    For correspondence
    jaster@rics.bwh.harvard.edu
    Competing interests
    Jon C Aster, JCA is a consultant for Ayala Pharmaceuticals and for Cellestia, Inc. There is no conflict of interest with the work described in this manuscript..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1957-9070

Funding

Ludwig Institute for Cancer Research (None)

  • Jon C Aster

National Institutes of Health (R35 CA220340)

  • Stephen C Blacklow

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Apurva Sarin, Institute for Stem Cell Science and Regenerative Medicine, India

Version history

  1. Received: April 20, 2020
  2. Accepted: September 15, 2020
  3. Accepted Manuscript published: September 16, 2020 (version 1)
  4. Version of Record published: October 1, 2020 (version 2)

Copyright

© 2020, Pan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,082
    views
  • 223
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Li Pan
  2. Madeleine E Lemieux
  3. Tom Thomas
  4. Julia M Rogers
  5. Colin H Lipper
  6. Winston Lee
  7. Carl Johnson
  8. Lynette M Sholl
  9. Andrew P South
  10. Jarrod A Marto
  11. Guillaume O Adelmant
  12. Stephen C Blacklow
  13. Jon C Aster
(2020)
IER5, a DNA damage response gene, is required for Notch-mediated induction of squamous cell differentiation
eLife 9:e58081.
https://doi.org/10.7554/eLife.58081

Share this article

https://doi.org/10.7554/eLife.58081

Further reading

    1. Cancer Biology
    Fang Huang, Zhenwei Dai ... Yang Wang
    Research Article

    Aberrant alternative splicing is well-known to be closely associated with tumorigenesis of various cancers. However, the intricate mechanisms underlying breast cancer metastasis driven by deregulated splicing events remain largely unexplored. Here, we unveiled that RBM7 is decreased in lymph node and distant organ metastases of breast cancer as compared to primary lesions and low expression of RBM7 is correlated with the reduced disease-free survival of breast cancer patients. Breast cancer cells with RBM7 depletion exhibited an increased potential for lung metastasis compared to scramble control cells. The absence of RBM7 stimulated breast cancer cell migration, invasion, and angiogenesis. Mechanistically, RBM7 controlled the splicing switch of MFGE8, favoring the production of the predominant isoform of MFGE8, MFGE8-L. This resulted in the attenuation of STAT1 phosphorylation and alterations in cell adhesion molecules. MFGE8-L exerted an inhibitory effect on the migratory and invasive capability of breast cancer cells, while the truncated isoform MFGE8-S, which lack the second F5/8 type C domain had the opposite effect. In addition, RBM7 negatively regulates the NF-κB cascade and an NF-κB inhibitor could obstruct the increase in HUVEC tube formation caused by RBM7 silencing. Clinically, we noticed a positive correlation between RBM7 expression and MFGE8 exon7 inclusion in breast cancer tissues, providing new mechanistic insights for molecular-targeted therapy in combating breast cancer.

    1. Cancer Biology
    2. Immunology and Inflammation
    Nicholas J Mullen, Surendra K Shukla ... Pankaj K Singh
    Research Article

    Pyrimidine nucleotide biosynthesis is a druggable metabolic dependency of cancer cells, and chemotherapy agents targeting pyrimidine metabolism are the backbone of treatment for many cancers. Dihydroorotate dehydrogenase (DHODH) is an essential enzyme in the de novo pyrimidine biosynthesis pathway that can be targeted by clinically approved inhibitors. However, despite robust preclinical anticancer efficacy, DHODH inhibitors have shown limited single-agent activity in phase 1 and 2 clinical trials. Therefore, novel combination therapy strategies are necessary to realize the potential of these drugs. To search for therapeutic vulnerabilities induced by DHODH inhibition, we examined gene expression changes in cancer cells treated with the potent and selective DHODH inhibitor brequinar (BQ). This revealed that BQ treatment causes upregulation of antigen presentation pathway genes and cell surface MHC class I expression. Mechanistic studies showed that this effect is (1) strictly dependent on pyrimidine nucleotide depletion, (2) independent of canonical antigen presentation pathway transcriptional regulators, and (3) mediated by RNA polymerase II elongation control by positive transcription elongation factor B (P-TEFb). Furthermore, BQ showed impressive single-agent efficacy in the immunocompetent B16F10 melanoma model, and combination treatment with BQ and dual immune checkpoint blockade (anti-CTLA-4 plus anti-PD-1) significantly prolonged mouse survival compared to either therapy alone. Our results have important implications for the clinical development of DHODH inhibitors and provide a rationale for combination therapy with BQ and immune checkpoint blockade.