IER5, a DNA damage response gene, is required for Notch-mediated induction of squamous cell differentiation
Abstract
Notch signaling regulates squamous cell proliferation and differentiation and is frequently disrupted in squamous cell carcinomas, in which Notch is tumor suppressive. Here, we show that conditional activation of Notch in squamous cells activates a context-specific gene expression program through lineage-specific regulatory elements. Among direct Notch target genes are multiple DNA damage response genes, including IER5, which we show is required for Notch-induced differentiation of squamous carcinoma cells and TERT-immortalized keratinocytes. IER5 is epistatic to PPP2R2A, a gene that encodes the PP2A B55a subunit, which we show interacts with IER5 in cells and in purified systems. Thus, Notch and DNA-damage response pathways converge in squamous cells on common genes that promote differentiation, which may serve to eliminate damaged cells from the proliferative pool. We further propose that crosstalk involving Notch and PP2A enables tuning and integration of Notch signaling with other pathways that regulate squamous differentiation.
Data availability
Sequencing data have been deposited in GEO under accession codes GSE156488 and GSE156624
-
Notch target genes in keratinocytesNCBI GEne Expression Omnibus, GSE156488.
-
Notch target genes in keratinocytesNCBI GEne Expression Omnibus, GSE156624.
Article and author information
Author details
Funding
Ludwig Institute for Cancer Research (None)
- Jon C Aster
National Institutes of Health (R35 CA220340)
- Stephen C Blacklow
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Pan et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,478
- views
-
- 276
- downloads
-
- 17
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Citations by DOI
-
- 17
- citations for umbrella DOI https://doi.org/10.7554/eLife.58081