Mechanisms underlying genome instability mediated by formation of foldback inversions in Saccharomyces cerevisiae

  1. Bin-zhong Li
  2. Christopher D Putnam  Is a corresponding author
  3. Richard David Kolodner  Is a corresponding author
  1. Ludwig Institute for Cancer Research, UCSD, United States

Abstract

Foldback inversions, also called inverted duplications, have been observed in human genetic diseases and cancers. Here we used a Saccharomyces cerevisiae genetic system that generates gross chromosomal rearrangements (GCRs) mediated by foldback inversions combined with whole-genome sequencing to study their formation. Foldback inversions were mediated by formation of single-stranded DNA hairpins. Two types of hairpins were identified: small-loop hairpins that were suppressed by MRE11, SAE2, SLX1, and YKU80 and large-loop hairpins that were suppressed by YEN1, TEL1, SWR1, and MRC1. Analysis of CRISPR/Cas9-induced double strand breaks (DSBs) revealed that long-stem hairpin-forming sequences could form foldback inversions when proximal or distal to the DSB, whereas short-stem hairpin-forming sequences formed foldback inversions when proximal to the DSB. Finally, we found that foldback inversion GCRs were stabilized by secondary rearrangements, mostly mediated by different homologous recombination mechanisms including single-strand annealing; however, POL32-dependent break-induced replication did not appear to be involved forming secondary rearrangements.

Data availability

Sequencing data is available from National Center for Biotechnology Information Sequence Read Archive under accession number PRJNA627970.All other data generated are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Bin-zhong Li

    Cancer Genetics, Ludwig Institute for Cancer Research, UCSD, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christopher D Putnam

    Medicine, UCSD, Ludwig Institute for Cancer Research, UCSD, La Jolla, United States
    For correspondence
    cdputnam@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
  3. Richard David Kolodner

    Cancer Genetics, Ludwig Institute for Cancer Research, UCSD, La Jolla, United States
    For correspondence
    rkolodner@health.ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4806-8384

Funding

National Institute of General Medical Sciences (GM26017)

  • Richard David Kolodner

Ludwig Institute for Cancer Research (Lab Funding)

  • Bin-zhong Li
  • Christopher D Putnam
  • Richard David Kolodner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,361
    views
  • 213
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bin-zhong Li
  2. Christopher D Putnam
  3. Richard David Kolodner
(2020)
Mechanisms underlying genome instability mediated by formation of foldback inversions in Saccharomyces cerevisiae
eLife 9:e58223.
https://doi.org/10.7554/eLife.58223

Share this article

https://doi.org/10.7554/eLife.58223

Further reading

    1. Chromosomes and Gene Expression
    Daphne R Knudsen-Palmer, Pravrutha Raman ... Antony M Jose
    Research Article

    Since double-stranded RNA (dsRNA) is effective for silencing a wide variety of genes, all genes are typically considered equivalent targets for such RNA interference (RNAi). Yet, loss of some regulators of RNAi in the nematode Caenorhabditis elegans can selectively impair the silencing of some genes. Here, we show that such selective requirements can be explained by an intersecting network of regulators acting on genes with differences in their RNA metabolism. In this network, the Maelstrom domain-containing protein RDE-10, the intrinsically disordered protein MUT-16, and the Argonaute protein NRDE-3 work together so that any two are required for silencing one somatic gene, but each is singly required for silencing another somatic gene, where only the requirement for NRDE-3 can be overcome by enhanced dsRNA processing. Quantitative models and their exploratory simulations led us to find that (1) changing cis-regulatory elements of the target gene can reduce the dependence on NRDE-3, (2) animals can recover from silencing in non-dividing cells, and (3) cleavage and tailing of mRNAs with UG dinucleotides, which makes them templates for amplifying small RNAs, are enriched within ‘pUG zones’ matching the dsRNA. Similar crosstalk between pathways and restricted amplification could result in apparently selective silencing by endogenous RNAs.

    1. Chromosomes and Gene Expression
    Shuvra Shekhar Roy, Sulochana Bagri ... Shantanu Chowdhury
    Research Article

    Although the role of G-quadruplex (G4) DNA structures has been suggested in chromosomal looping this was not tested directly. Here, to test causal function, an array of G4s, or control sequence that does not form G4s, were inserted within chromatin in cells. In vivo G4 formation of the inserted G4 sequence array, and not the control sequence, was confirmed using G4-selective antibody. Compared to the control insert, we observed a remarkable increase in the number of 3D chromatin looping interactions from the inserted G4 array. This was evident within the immediate topologically associated domain (TAD) and throughout the genome. Locally, recruitment of enhancer histone marks and the transcriptional coactivator p300/Acetylated-p300 increased in the G4-array, but not in the control insertion. Resulting promoter-enhancer interactions and gene activation were clear up to 5 Mb away from the insertion site. Together, these show the causal role of G4s in enhancer function and long-range chromatin interactions. Mechanisms of 3D topology are primarily based on DNA-bound architectural proteins that induce/stabilize long-range interactions. Involvement of the underlying intrinsic DNA sequence/structure in 3D looping shown here therefore throws new light on how long-range chromosomal interactions might be induced or maintained.