Damage-responsive, maturity-silenced enhancers regulate multiple genes that direct regeneration in Drosophila

  1. Robin E Harris  Is a corresponding author
  2. Michael J Stinchfield
  3. Spencer L Nystrom
  4. Daniel J McKay
  5. Iswar K Hariharan  Is a corresponding author
  1. Arizona State University, United States
  2. University of North Carolina at Chapel Hill, United States
  3. University of California, Berkeley, United States

Abstract

Like tissues of many organisms, Drosophila imaginal discs lose the ability to regenerate as they mature. This loss of regenerative capacity coincides with reduced damage-responsive expression of multiple genes needed for regeneration. We previously showed that two such genes, wg and Wnt6, are regulated by a single damage-responsive enhancer that becomes progressively inactivated via Polycomb-mediated silencing as discs mature (Harris et al., 2016). Here we explore the generality of this mechanism and identify additional damage-responsive, maturity-silenced (DRMS) enhancers, some near genes known to be required for regeneration such as Mmp1, and others near genes that we now show function in regeneration. Using a novel GAL4-independent ablation system we characterize two DRMS-associated genes, apontic (apt), which curtails regeneration and CG9752/asperous (aspr), which promotes it. This mechanism of suppressing regeneration by silencing damage-responsive enhancers at multiple loci can be partially overcome by reducing activity of the chromatin regulator extra sex combs (esc).

Data availability

Sequencing data have been deposited in GEO. Accession code: GSE140755. All other data generated or analyzed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Robin E Harris

    School of Life Sciences, Arizona State University, Tempe, United States
    For correspondence
    Robin.Harris@asu.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael J Stinchfield

    School of Life Sciences, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Spencer L Nystrom

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1000-1579
  4. Daniel J McKay

    Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Iswar K Hariharan

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    ikh@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6505-0744

Funding

National Institutes of Health (R35 GM122490)

  • Iswar K Hariharan

American Cancer Society (RP-16238-06-COUN)

  • Iswar K Hariharan

National Institutes of Health (R35 GM128851)

  • Daniel J McKay

American Cancer Society (RSG-17-164-01-DDC)

  • Daniel J McKay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hugo J Bellen, Baylor College of Medicine, United States

Publication history

  1. Received: April 29, 2020
  2. Accepted: May 28, 2020
  3. Accepted Manuscript published: June 3, 2020 (version 1)
  4. Version of Record published: June 17, 2020 (version 2)

Copyright

© 2020, Harris et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,199
    Page views
  • 323
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robin E Harris
  2. Michael J Stinchfield
  3. Spencer L Nystrom
  4. Daniel J McKay
  5. Iswar K Hariharan
(2020)
Damage-responsive, maturity-silenced enhancers regulate multiple genes that direct regeneration in Drosophila
eLife 9:e58305.
https://doi.org/10.7554/eLife.58305

Further reading

    1. Developmental Biology
    Zain Alhashem et al.
    Research Article Updated

    Coordination of cell proliferation and migration is fundamental for life, and its dysregulation has catastrophic consequences, such as cancer. How cell cycle progression affects migration, and vice versa, remains largely unknown. We address these questions by combining in silico modelling and in vivo experimentation in the zebrafish trunk neural crest (TNC). TNC migrate collectively, forming chains with a leader cell directing the movement of trailing followers. We show that the acquisition of migratory identity is autonomously controlled by Notch signalling in TNC. High Notch activity defines leaders, while low Notch determines followers. Moreover, cell cycle progression is required for TNC migration and is regulated by Notch. Cells with low Notch activity stay longer in G1 and become followers, while leaders with high Notch activity quickly undergo G1/S transition and remain in S-phase longer. In conclusion, TNC migratory identities are defined through the interaction of Notch signalling and cell cycle progression.

    1. Developmental Biology
    2. Neuroscience
    Eleni Chrysostomou et al.
    Research Article

    Neurogenesis is the generation of neurons from stem cells, a process that is regulated by SoxB transcription factors (TFs) in many animals. Although the roles of these TFs are well understood in bilaterians, how their neural function evolved is unclear. Here, we use Hydractinia symbiolongicarpus, a member of the early-branching phylum Cnidaria, to provide insight into this question. Using a combination of mRNA in situ hybridization, transgenesis, gene knockdown, transcriptomics, and in-vivo imaging, we provide a comprehensive molecular and cellular analysis of neurogenesis during embryogenesis, homeostasis, and regeneration in this animal. We show that SoxB genes act sequentially at least in some cases. Stem cells expressing Piwi1 and Soxb1, which have a broad developmental potential, become neural progenitors that express Soxb2 before differentiating into mature neural cells. Knockdown of SoxB genes resulted in complex defects in embryonic neurogenesis. Hydractinia neural cells differentiate while migrating from the aboral to the oral end of the animal, but it is unclear whether migration per se or exposure to different microenvironments is the main driver of their fate determination. Our data constitute a rich resource for studies aiming at addressing this question, which is at the heart of understanding the origin and development of animal nervous systems.