Damage-responsive, maturity-silenced enhancers regulate multiple genes that direct regeneration in Drosophila

  1. Robin E Harris  Is a corresponding author
  2. Michael J Stinchfield
  3. Spencer L Nystrom
  4. Daniel J McKay
  5. Iswar K Hariharan  Is a corresponding author
  1. Arizona State University, United States
  2. University of North Carolina at Chapel Hill, United States
  3. University of California, Berkeley, United States

Abstract

Like tissues of many organisms, Drosophila imaginal discs lose the ability to regenerate as they mature. This loss of regenerative capacity coincides with reduced damage-responsive expression of multiple genes needed for regeneration. We previously showed that two such genes, wg and Wnt6, are regulated by a single damage-responsive enhancer that becomes progressively inactivated via Polycomb-mediated silencing as discs mature (Harris et al., 2016). Here we explore the generality of this mechanism and identify additional damage-responsive, maturity-silenced (DRMS) enhancers, some near genes known to be required for regeneration such as Mmp1, and others near genes that we now show function in regeneration. Using a novel GAL4-independent ablation system we characterize two DRMS-associated genes, apontic (apt), which curtails regeneration and CG9752/asperous (aspr), which promotes it. This mechanism of suppressing regeneration by silencing damage-responsive enhancers at multiple loci can be partially overcome by reducing activity of the chromatin regulator extra sex combs (esc).

Data availability

Sequencing data have been deposited in GEO. Accession code: GSE140755. All other data generated or analyzed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Robin E Harris

    School of Life Sciences, Arizona State University, Tempe, United States
    For correspondence
    Robin.Harris@asu.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael J Stinchfield

    School of Life Sciences, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Spencer L Nystrom

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1000-1579
  4. Daniel J McKay

    Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Iswar K Hariharan

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    ikh@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6505-0744

Funding

National Institutes of Health (R35 GM122490)

  • Iswar K Hariharan

American Cancer Society (RP-16238-06-COUN)

  • Iswar K Hariharan

National Institutes of Health (R35 GM128851)

  • Daniel J McKay

American Cancer Society (RSG-17-164-01-DDC)

  • Daniel J McKay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hugo J Bellen, Baylor College of Medicine, United States

Publication history

  1. Received: April 29, 2020
  2. Accepted: May 28, 2020
  3. Accepted Manuscript published: June 3, 2020 (version 1)
  4. Version of Record published: June 17, 2020 (version 2)

Copyright

© 2020, Harris et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,589
    Page views
  • 363
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robin E Harris
  2. Michael J Stinchfield
  3. Spencer L Nystrom
  4. Daniel J McKay
  5. Iswar K Hariharan
(2020)
Damage-responsive, maturity-silenced enhancers regulate multiple genes that direct regeneration in Drosophila
eLife 9:e58305.
https://doi.org/10.7554/eLife.58305

Further reading

    1. Developmental Biology
    2. Microbiology and Infectious Disease
    Théodore Grenier, Jessika Consuegra ... François Leulier
    Research Article

    Symbiotic bacteria interact with their host through symbiotic cues. Here, we took advantage of the mutualism between Drosophila and Lactiplantibacillus plantarum (Lp) to investigate a novel mechanism of host-symbiont interaction. Using chemically-defined diets, we found that association with Lp improves the growth of larvae fed amino acid-imbalanced diets, even though Lp cannot produce the limiting amino acid. We show that in this context Lp supports its host's growth through a molecular dialog that requires functional operons encoding ribosomal and transfer RNAs (r/tRNAs) in Lp and the GCN2 kinase in Drosophila's enterocytes. Our data indicate Lp's r/tRNAs are packaged in extracellular vesicles and activate GCN2 in a subset of larval enterocytes, a mechanism necessary to remodel the intestinal transcriptome and ultimately to support anabolic growth. Based on our findings, we propose a novel beneficial molecular dialog between host and microbes, which relies on a non-canonical role of GCN2 as a mediator of non-nutritional symbiotic cues encoded by r/tRNA operons.

    1. Developmental Biology
    2. Computational and Systems Biology
    Erik S Schild, Shivam Gupta ... Hendrik C Korswagen
    Research Article Updated

    Many developmental processes depend on precise temporal control of gene expression. We have previously established a theoretical framework for regulatory strategies that can govern such high temporal precision, but experimental validation of these predictions was still lacking. Here, we use the time-dependent expression of a Wnt receptor that controls neuroblast migration in Caenorhabditis elegans as a tractable system to study a robust, cell-intrinsic timing mechanism in vivo. Single-molecule mRNA quantification showed that the expression of the receptor increases non-linearly, a dynamic that is predicted to enhance timing precision over an unregulated, linear increase in timekeeper abundance. We show that this upregulation depends on transcriptional activation, providing in vivo evidence for a model in which the timing of receptor expression is regulated through an accumulating activator that triggers expression when a specific threshold is reached. This timing mechanism acts across a cell division that occurs in the neuroblast lineage and is influenced by the asymmetry of the division. Finally, we show that positive feedback of receptor expression through the canonical Wnt pathway enhances temporal precision. We conclude that robust cell-intrinsic timing can be achieved by combining regulation and feedback of the timekeeper gene.