Damage-responsive, maturity-silenced enhancers regulate multiple genes that direct regeneration in Drosophila

  1. Robin E Harris  Is a corresponding author
  2. Michael J Stinchfield
  3. Spencer L Nystrom
  4. Daniel J McKay
  5. Iswar K Hariharan  Is a corresponding author
  1. Arizona State University, United States
  2. University of North Carolina at Chapel Hill, United States
  3. University of California, Berkeley, United States

Abstract

Like tissues of many organisms, Drosophila imaginal discs lose the ability to regenerate as they mature. This loss of regenerative capacity coincides with reduced damage-responsive expression of multiple genes needed for regeneration. We previously showed that two such genes, wg and Wnt6, are regulated by a single damage-responsive enhancer that becomes progressively inactivated via Polycomb-mediated silencing as discs mature (Harris et al., 2016). Here we explore the generality of this mechanism and identify additional damage-responsive, maturity-silenced (DRMS) enhancers, some near genes known to be required for regeneration such as Mmp1, and others near genes that we now show function in regeneration. Using a novel GAL4-independent ablation system we characterize two DRMS-associated genes, apontic (apt), which curtails regeneration and CG9752/asperous (aspr), which promotes it. This mechanism of suppressing regeneration by silencing damage-responsive enhancers at multiple loci can be partially overcome by reducing activity of the chromatin regulator extra sex combs (esc).

Data availability

Sequencing data have been deposited in GEO. Accession code: GSE140755. All other data generated or analyzed during this study are included in the manuscript and supporting files.

The following data sets were generated

Article and author information

Author details

  1. Robin E Harris

    School of Life Sciences, Arizona State University, Tempe, United States
    For correspondence
    Robin.Harris@asu.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Michael J Stinchfield

    School of Life Sciences, Arizona State University, Tempe, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Spencer L Nystrom

    Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1000-1579
  4. Daniel J McKay

    Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Iswar K Hariharan

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    ikh@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6505-0744

Funding

National Institutes of Health (R35 GM122490)

  • Iswar K Hariharan

American Cancer Society (RP-16238-06-COUN)

  • Iswar K Hariharan

National Institutes of Health (R35 GM128851)

  • Daniel J McKay

American Cancer Society (RSG-17-164-01-DDC)

  • Daniel J McKay

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Hugo J Bellen, Baylor College of Medicine, United States

Version history

  1. Received: April 29, 2020
  2. Accepted: May 28, 2020
  3. Accepted Manuscript published: June 3, 2020 (version 1)
  4. Version of Record published: June 17, 2020 (version 2)

Copyright

© 2020, Harris et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,992
    views
  • 410
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robin E Harris
  2. Michael J Stinchfield
  3. Spencer L Nystrom
  4. Daniel J McKay
  5. Iswar K Hariharan
(2020)
Damage-responsive, maturity-silenced enhancers regulate multiple genes that direct regeneration in Drosophila
eLife 9:e58305.
https://doi.org/10.7554/eLife.58305

Share this article

https://doi.org/10.7554/eLife.58305

Further reading

    1. Developmental Biology
    Amandine Jarysta, Abigail LD Tadenev ... Basile Tarchini
    Research Article

    Inhibitory G alpha (GNAI or Gαi) proteins are critical for the polarized morphogenesis of sensory hair cells and for hearing. The extent and nature of their actual contributions remains unclear, however, as previous studies did not investigate all GNAI proteins and included non-physiological approaches. Pertussis toxin can downregulate functionally redundant GNAI1, GNAI2, GNAI3, and GNAO proteins, but may also induce unrelated defects. Here, we directly and systematically determine the role(s) of each individual GNAI protein in mouse auditory hair cells. GNAI2 and GNAI3 are similarly polarized at the hair cell apex with their binding partner G protein signaling modulator 2 (GPSM2), whereas GNAI1 and GNAO are not detected. In Gnai3 mutants, GNAI2 progressively fails to fully occupy the sub-cellular compartments where GNAI3 is missing. In contrast, GNAI3 can fully compensate for the loss of GNAI2 and is essential for hair bundle morphogenesis and auditory function. Simultaneous inactivation of Gnai2 and Gnai3 recapitulates for the first time two distinct types of defects only observed so far with pertussis toxin: (1) a delay or failure of the basal body to migrate off-center in prospective hair cells, and (2) a reversal in the orientation of some hair cell types. We conclude that GNAI proteins are critical for hair cells to break planar symmetry and to orient properly before GNAI2/3 regulate hair bundle morphogenesis with GPSM2.

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.