Splicing variation of BMP2K balances abundance of COPII assemblies and autophagic degradation in erythroid cells

  1. Jaroslaw Cendrowski  Is a corresponding author
  2. Marta Kaczmarek
  3. Michał Mazur
  4. Katarzyna Kuzmicz-Kowalska
  5. Kamil Jastrzebski
  6. Marta Brewinska-Olchowik
  7. Agata Kominek
  8. Katarzyna Piwocka
  9. Marta Miaczynska  Is a corresponding author
  1. International Institute of Molecular and Cell Biology in Warsaw, Poland
  2. Nencki Institute of Experimental Biology, Polish Academy of Sciences, Poland

Abstract

Intracellular transport undergoes remodeling upon cell differentiation, which involves cell type-specific regulators. Bone morphogenetic protein 2-inducible kinase (BMP2K) has been potentially implicated in endocytosis and cell differentiation but its molecular functions remained unknown. We discovered that its longer (L) and shorter (S) splicing variants regulate erythroid differentiation in a manner unexplainable by their involvement in AP-2 adaptor phosphorylation and endocytosis. However, both variants interact with SEC16A and could localize to the juxtanuclear secretory compartment. Variant-specific depletion approach showed that BMP2K isoforms constitute a BMP2K-L/S regulatory system that controls the distribution of SEC16A and SEC24B as well as SEC31A abundance at COPII assemblies. Finally, we found L to promote and S to restrict autophagic degradation and erythroid differentiation. Hence, we propose that BMP2K-L and BMP2K-S differentially regulate abundance and distribution of COPII assemblies as well as autophagy, possibly thereby fine-tuning erythroid differentiation.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD013542

The following data sets were generated

Article and author information

Author details

  1. Jaroslaw Cendrowski

    Laboratory of Cell Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
    For correspondence
    jcendrowski@iimcb.gov.pl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8579-7279
  2. Marta Kaczmarek

    Laboratory of Cell Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4939-6299
  3. Michał Mazur

    Laboratory of Cell Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5087-4409
  4. Katarzyna Kuzmicz-Kowalska

    Laboratory of Cell Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  5. Kamil Jastrzebski

    Laboratory of Cell Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  6. Marta Brewinska-Olchowik

    Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  7. Agata Kominek

    Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  8. Katarzyna Piwocka

    Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  9. Marta Miaczynska

    Laboratory of Cell Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
    For correspondence
    miaczynska@iimcb.gov.pl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0031-5267

Funding

Narodowe Centrum Nauki (UMO-2011/02/A/NZ3/00149)

  • Jaroslaw Cendrowski
  • Katarzyna Kuzmicz-Kowalska
  • Kamil Jastrzebski
  • Marta Miaczynska

Fundacja na rzecz Nauki Polskiej (POIR.04.04.00-00-20CE/16-00)

  • Marta Kaczmarek
  • Kamil Jastrzebski
  • Marta Miaczynska

Fundacja na rzecz Nauki Polskiej (POIR.04.04.00-00-1C54/16-00)

  • Jaroslaw Cendrowski
  • Michał Mazur

Fundacja na rzecz Nauki Polskiej (POIR.04.04.00-00-23C2/17-00)

  • Katarzyna Piwocka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Elizabeth A Miller, MRC Laboratory of Molecular Biology, United Kingdom

Version history

  1. Received: May 2, 2020
  2. Accepted: August 13, 2020
  3. Accepted Manuscript published: August 14, 2020 (version 1)
  4. Version of Record published: September 4, 2020 (version 2)

Copyright

© 2020, Cendrowski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,586
    views
  • 269
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jaroslaw Cendrowski
  2. Marta Kaczmarek
  3. Michał Mazur
  4. Katarzyna Kuzmicz-Kowalska
  5. Kamil Jastrzebski
  6. Marta Brewinska-Olchowik
  7. Agata Kominek
  8. Katarzyna Piwocka
  9. Marta Miaczynska
(2020)
Splicing variation of BMP2K balances abundance of COPII assemblies and autophagic degradation in erythroid cells
eLife 9:e58504.
https://doi.org/10.7554/eLife.58504

Share this article

https://doi.org/10.7554/eLife.58504

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Jiabin Pan, Rui Zhou ... Xiang-dong Li
    Research Article

    Transport and localization of melanosome at the periphery region of melanocyte are depended on myosin-5a (Myo5a), which associates with melanosome by interacting with its adaptor protein melanophilin (Mlph). Mlph contains four functional regions, including Rab27a-binding domain, Myo5a GTD-binding motif (GTBM), Myo5a exon F-binding domain (EFBD), and actin-binding domain (ABD). The association of Myo5a with Mlph is known to be mediated by two specific interactions: the interaction between the exon-F-encoded region of Myo5a and Mlph-EFBD and that between Myo5a-GTD and Mlph-GTBM. Here, we identify a third interaction between Myo5a and Mlph, that is, the interaction between the exon-G-encoded region of Myo5a and Mlph-ABD. The exon-G/ABD interaction is independent from the exon-F/EFBD interaction and is required for the association of Myo5a with melanosome. Moreover, we demonstrate that Mlph-ABD interacts with either the exon-G or actin filament, but cannot interact with both of them simultaneously. Based on above findings, we propose a new model for the Mlph-mediated Myo5a transportation of melanosomes.

    1. Cell Biology
    Yuhao Wang, Linhao Ruan ... Rong Li
    Research Article

    Mitochondria are the cellular energy hub and central target of metabolic regulation. Mitochondria also facilitate proteostasis through pathways such as the ‘mitochondria as guardian in cytosol’ (MAGIC) whereby cytosolic misfolded proteins (MPs) are imported into and degraded inside mitochondria. In this study, a genome-wide screen in Saccharomyces cerevisiae uncovered that Snf1, the yeast AMP-activated protein kinase (AMPK), inhibits the import of MPs into mitochondria while promoting mitochondrial biogenesis under glucose starvation. We show that this inhibition requires a downstream transcription factor regulating mitochondrial gene expression and is likely to be conferred through substrate competition and mitochondrial import channel selectivity. We further show that Snf1/AMPK activation protects mitochondrial fitness in yeast and human cells under stress induced by MPs such as those associated with neurodegenerative diseases.