Splicing variation of BMP2K balances abundance of COPII assemblies and autophagic degradation in erythroid cells

  1. Jaroslaw Cendrowski  Is a corresponding author
  2. Marta Kaczmarek
  3. Michał Mazur
  4. Katarzyna Kuzmicz-Kowalska
  5. Kamil Jastrzebski
  6. Marta Brewinska-Olchowik
  7. Agata Kominek
  8. Katarzyna Piwocka
  9. Marta Miaczynska  Is a corresponding author
  1. International Institute of Molecular and Cell Biology in Warsaw, Poland
  2. Nencki Institute of Experimental Biology, Polish Academy of Sciences, Poland

Abstract

Intracellular transport undergoes remodeling upon cell differentiation, which involves cell type-specific regulators. Bone morphogenetic protein 2-inducible kinase (BMP2K) has been potentially implicated in endocytosis and cell differentiation but its molecular functions remained unknown. We discovered that its longer (L) and shorter (S) splicing variants regulate erythroid differentiation in a manner unexplainable by their involvement in AP-2 adaptor phosphorylation and endocytosis. However, both variants interact with SEC16A and could localize to the juxtanuclear secretory compartment. Variant-specific depletion approach showed that BMP2K isoforms constitute a BMP2K-L/S regulatory system that controls the distribution of SEC16A and SEC24B as well as SEC31A abundance at COPII assemblies. Finally, we found L to promote and S to restrict autophagic degradation and erythroid differentiation. Hence, we propose that BMP2K-L and BMP2K-S differentially regulate abundance and distribution of COPII assemblies as well as autophagy, possibly thereby fine-tuning erythroid differentiation.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD013542

The following data sets were generated

Article and author information

Author details

  1. Jaroslaw Cendrowski

    Laboratory of Cell Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
    For correspondence
    jcendrowski@iimcb.gov.pl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8579-7279
  2. Marta Kaczmarek

    Laboratory of Cell Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4939-6299
  3. Michał Mazur

    Laboratory of Cell Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5087-4409
  4. Katarzyna Kuzmicz-Kowalska

    Laboratory of Cell Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  5. Kamil Jastrzebski

    Laboratory of Cell Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  6. Marta Brewinska-Olchowik

    Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  7. Agata Kominek

    Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  8. Katarzyna Piwocka

    Neurobiology Center, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
    Competing interests
    The authors declare that no competing interests exist.
  9. Marta Miaczynska

    Laboratory of Cell Biology, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
    For correspondence
    miaczynska@iimcb.gov.pl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0031-5267

Funding

Narodowe Centrum Nauki (UMO-2011/02/A/NZ3/00149)

  • Jaroslaw Cendrowski
  • Katarzyna Kuzmicz-Kowalska
  • Kamil Jastrzebski
  • Marta Miaczynska

Fundacja na rzecz Nauki Polskiej (POIR.04.04.00-00-20CE/16-00)

  • Marta Kaczmarek
  • Kamil Jastrzebski
  • Marta Miaczynska

Fundacja na rzecz Nauki Polskiej (POIR.04.04.00-00-1C54/16-00)

  • Jaroslaw Cendrowski
  • Michał Mazur

Fundacja na rzecz Nauki Polskiej (POIR.04.04.00-00-23C2/17-00)

  • Katarzyna Piwocka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Elizabeth A Miller, MRC Laboratory of Molecular Biology, United Kingdom

Publication history

  1. Received: May 2, 2020
  2. Accepted: August 13, 2020
  3. Accepted Manuscript published: August 14, 2020 (version 1)
  4. Version of Record published: September 4, 2020 (version 2)

Copyright

© 2020, Cendrowski et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,807
    Page views
  • 218
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jaroslaw Cendrowski
  2. Marta Kaczmarek
  3. Michał Mazur
  4. Katarzyna Kuzmicz-Kowalska
  5. Kamil Jastrzebski
  6. Marta Brewinska-Olchowik
  7. Agata Kominek
  8. Katarzyna Piwocka
  9. Marta Miaczynska
(2020)
Splicing variation of BMP2K balances abundance of COPII assemblies and autophagic degradation in erythroid cells
eLife 9:e58504.
https://doi.org/10.7554/eLife.58504

Further reading

    1. Cell Biology
    Tai-De Li et al.
    Research Article

    Branched actin networks are self-assembling molecular motors that move biological membranes and drive many important cellular processes, including phagocytosis, endocytosis, and pseudopod protrusion. When confronted with opposing forces, the growth rate of these networks slows and their density increases, but the stoichiometry of key components does not change. The molecular mechanisms governing this force response are not well understood, so we used single-molecule imaging and AFM cantilever deflection to measure how applied forces affect each step in branched actin network assembly. Although load forces are observed to increase the density of growing filaments, we find that they actually decrease the rate of filament nucleation due to inhibitory interactions between actin filament ends and nucleation promoting factors. The force-induced increase in network density turns out to result from an exponential drop in the rate constant that governs filament capping. The force dependence of filament capping matches that of filament elongation and can be explained by expanding Brownian Ratchet theory to cover both processes. We tested a key prediction of this expanded theory by measuring the force-dependent activity of engineered capping protein variants and found that increasing the size of the capping protein increases its sensitivity to applied forces. In summary, we find that Brownian Ratchets underlie not only the ability of growing actin filaments to generate force but also the ability of branched actin networks to adapt their architecture to changing loads.

    1. Cell Biology
    2. Immunology and Inflammation
    Ekaterini Maria Lyras et al.
    Research Article

    The tongue is a unique muscular organ situated in the oral cavity where it is involved in taste sensation, mastication, and articulation. As a barrier organ, which is constantly exposed to environmental pathogens, the tongue is expected to host an immune cell network ensuring local immune defence. However, the composition and the transcriptional landscape of the tongue immune system are currently not completely defined. Here, we characterised the tissue-resident immune compartment of the murine tongue during development, health and disease, combining single-cell RNA-sequencing with in situ immunophenotyping. We identified distinct local immune cell populations and described two specific subsets of tongue-resident macrophages occupying discrete anatomical niches. Cx3cr1+ macrophages were located specifically in the highly innervated lamina propria beneath the tongue epidermis and at times in close proximity to fungiform papillae. Folr2+ macrophages were detected in deeper muscular tissue. In silico analysis indicated that the two macrophage subsets originate from a common proliferative precursor during early postnatal development and responded differently to systemic LPS in vivo. Our description of the under-investigated tongue immune system sets a starting point to facilitate research on tongue immune-physiology and pathology including cancer and taste disorders.