A new role for histone demethylases in the maintenance of plant genome integrity

  1. Javier Antunez-Sanchez
  2. Matthew Naish
  3. Juan Sebastian Ramirez-Prado
  4. Sho Ohno
  5. Ying Huang
  6. Alexander Dawson
  7. Korawit Opassathian
  8. Deborah Manza-Mianza
  9. Federico Ariel
  10. Cecile Raynaud
  11. Anjar Wibowo
  12. Josquin Daron
  13. Minako Ueda
  14. David Latrasse
  15. R Keith Slotkin
  16. Detlef Weigel
  17. Moussa Benhamed  Is a corresponding author
  18. Jose Gutierrez-Marcos  Is a corresponding author
  1. University of Warwick, United Kingdom
  2. Institute of Plant Sciences Paris Saclay, France
  3. Max Planck Institute for Developmental Biology, Germany
  4. The Ohio State University, United States
  5. Nagoya University, Japan
  6. Donald Danforth Plant Science Center, United States
  7. Université Paris Saclay, France

Abstract

Histone modifications deposited by the Polycomb repressive complex 2 (PRC2) play a critical role in the control of growth, development, and adaptation to environmental fluctuations of most multicellular eukaryotes. The catalytic activity of PRC2 is counteracted by Jumonji-type (JMJ) histone demethylases, which shapes the genomic distribution of H3K27me3. Here, we show that two JMJ histone demethylases in Arabidopsis, EARLY FLOWERING 6 (ELF6) and RELATIVE OF EARLY FLOWERING 6 (REF6), play distinct roles in H3K27me3 and H3K27me1 homeostasis. We show that failure to reset these chromatin marks during sexual reproduction results in the transgenerational inheritance of histone marks, which cause a loss of DNA methylation at heterochromatic loci and transposon activation. Thus, Jumonji-type histone demethylases play a dual role in plants by helping to maintain transcriptional states through development and safeguard genome integrity during sexual reproduction.

Data availability

Sequence data (BS-seq, RNA-seq and ChiP-seq) that support the findings of this study have been deposited at the European Nucleotide Archive (ENA) under the accession code PRJEB36508.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Javier Antunez-Sanchez

    School of Life Sciences, University of Warwick, Coventry, United Kingdom
    Competing interests
    No competing interests declared.
  2. Matthew Naish

    School of Life Sciences, University of Warwick, Coventry, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8977-1295
  3. Juan Sebastian Ramirez-Prado

    Plant Sciences, Institute of Plant Sciences Paris Saclay, Orsay Cedex, France
    Competing interests
    No competing interests declared.
  4. Sho Ohno

    School of Life Sciences, University of Warwick, Coventry, United Kingdom
    Competing interests
    No competing interests declared.
  5. Ying Huang

    Plant Sciences, Institute of Plant Sciences Paris Saclay, Orsay Cedex, France
    Competing interests
    No competing interests declared.
  6. Alexander Dawson

    School of Life Sciences, University of Warwick, Coventry, United Kingdom
    Competing interests
    No competing interests declared.
  7. Korawit Opassathian

    School of Life Sciences, University of Warwick, Coventry, United Kingdom
    Competing interests
    No competing interests declared.
  8. Deborah Manza-Mianza

    Plant Sciences, Institute of Plant Sciences Paris Saclay, Gif-sur-yvette, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3374-0200
  9. Federico Ariel

    Plant Sciences, Institute of Plant Sciences Paris Saclay, Orsay Cedex, France
    Competing interests
    No competing interests declared.
  10. Cecile Raynaud

    Plant Sciences, Institute of Plant Sciences Paris Saclay, Orsay Cedex, France
    Competing interests
    No competing interests declared.
  11. Anjar Wibowo

    Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    No competing interests declared.
  12. Josquin Daron

    Department of Molecular Genetics, The Ohio State University, Columbus, United States
    Competing interests
    No competing interests declared.
  13. Minako Ueda

    Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
    Competing interests
    No competing interests declared.
  14. David Latrasse

    Plant Sciences, Institute of Plant Sciences Paris Saclay, Orsay Cedex, France
    Competing interests
    No competing interests declared.
  15. R Keith Slotkin

    Donald Danforth Plant Science Center, St Louis, United States
    Competing interests
    No competing interests declared.
  16. Detlef Weigel

    Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    Detlef Weigel, Deputy/Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2114-7963
  17. Moussa Benhamed

    Plant Biology, Université Paris Saclay, Orsayffff, France
    For correspondence
    moussa.benhamed@u-psud.fr
    Competing interests
    No competing interests declared.
  18. Jose Gutierrez-Marcos

    School of Life Sciences, University of Warwick, Coventry, United Kingdom
    For correspondence
    j.f.gutierrez-marcos@warwick.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5441-9080

Funding

European Commission (AUREATE)

  • Jose Gutierrez-Marcos

Biotechnology and Biological Sciences Research Council (BB/L003023/1,BB/N005279/1,BB/N00194X/1 and BB/P02601X/1)

  • Jose Gutierrez-Marcos

Japan Society for the Promotion of Science (JP19H05676)

  • Minako Ueda

Agence Nationale de la Recherche (EpiGen)

  • Moussa Benhamed

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Pil Joon Seo, Seoul National University, Korea (South), Republic of

Version history

  1. Received: May 4, 2020
  2. Accepted: October 26, 2020
  3. Accepted Manuscript published: October 27, 2020 (version 1)
  4. Version of Record published: November 17, 2020 (version 2)

Copyright

© 2020, Antunez-Sanchez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,239
    views
  • 885
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Javier Antunez-Sanchez
  2. Matthew Naish
  3. Juan Sebastian Ramirez-Prado
  4. Sho Ohno
  5. Ying Huang
  6. Alexander Dawson
  7. Korawit Opassathian
  8. Deborah Manza-Mianza
  9. Federico Ariel
  10. Cecile Raynaud
  11. Anjar Wibowo
  12. Josquin Daron
  13. Minako Ueda
  14. David Latrasse
  15. R Keith Slotkin
  16. Detlef Weigel
  17. Moussa Benhamed
  18. Jose Gutierrez-Marcos
(2020)
A new role for histone demethylases in the maintenance of plant genome integrity
eLife 9:e58533.
https://doi.org/10.7554/eLife.58533

Share this article

https://doi.org/10.7554/eLife.58533

Further reading

    1. Chromosomes and Gene Expression
    Rupam Choudhury, Anuroop Venkateswaran Venkatasubramani ... Axel Imhof
    Research Article

    Eukaryotic chromatin is organized into functional domains, that are characterized by distinct proteomic compositions and specific nuclear positions. In contrast to cellular organelles surrounded by lipid membranes, the composition of distinct chromatin domains is rather ill described and highly dynamic. To gain molecular insight into these domains and explore their composition, we developed an antibody-based proximity-biotinylation method targeting the RNA and proteins constituents. The method that we termed Antibody-Mediated-Proximity-Labelling-coupled to Mass Spectrometry (AMPL-MS) does not require the expression of fusion proteins and therefore constitutes a versatile and very sensitive method to characterize the composition of chromatin domains based on specific signature proteins or histone modifications. To demonstrate the utility of our approach we used AMPL-MS to characterize the molecular features of the chromocenter as well as the chromosome territory containing the hyperactive X-chromosome in Drosophila. This analysis identified a number of known RNA binding proteins in proximity of the hyperactive X and the centromere, supporting the accuracy of our method. In addition, it enabled us to characterize the role of RNA in the formation of these nuclear bodies. Furthermore, our method identified a new set of RNA molecules associated with the Drosophila centromere. Characterization of these novel molecules suggested the formation of R-loops in centromeres, which we validated using a novel probe for R-loops in Drosophila. Taken together, AMPL-MS improves the selectivity and specificity of proximity ligation allowing for novel discoveries of weak protein-RNA interactions in biologically diverse domains.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Gregory Caleb Howard, Jing Wang ... William P Tansey
    Research Article

    The chromatin-associated protein WD Repeat Domain 5 (WDR5) is a promising target for cancer drug discovery, with most efforts blocking an arginine-binding cavity on the protein called the ‘WIN’ site that tethers WDR5 to chromatin. WIN site inhibitors (WINi) are active against multiple cancer cell types in vitro, the most notable of which are those derived from MLL-rearranged (MLLr) leukemias. Peptidomimetic WINi were originally proposed to inhibit MLLr cells via dysregulation of genes connected to hematopoietic stem cell expansion. Our discovery and interrogation of small-molecule WINi, however, revealed that they act in MLLr cell lines to suppress ribosome protein gene (RPG) transcription, induce nucleolar stress, and activate p53. Because there is no precedent for an anticancer strategy that specifically targets RPG expression, we took an integrated multi-omics approach to further interrogate the mechanism of action of WINi in human MLLr cancer cells. We show that WINi induce depletion of the stock of ribosomes, accompanied by a broad yet modest translational choke and changes in alternative mRNA splicing that inactivate the p53 antagonist MDM4. We also show that WINi are synergistic with agents including venetoclax and BET-bromodomain inhibitors. Together, these studies reinforce the concept that WINi are a novel type of ribosome-directed anticancer therapy and provide a resource to support their clinical implementation in MLLr leukemias and other malignancies.