Homology-guided identification of a conserved motif linking the antiviral functions of IFITM3 to its oligomeric state

  1. Kazi Rahman
  2. Charles A Coomer
  3. Saliha Majdoul
  4. Selena Y Ding
  5. Sergi Padilla-Parra
  6. Alex A Compton  Is a corresponding author
  1. National Cancer Institute, United States
  2. King's College London, United Kingdom

Abstract

The interferon-inducible transmembrane (IFITM) proteins belong to the Dispanin/CD225 family and inhibit diverse virus infections. IFITM3 reduces membrane fusion between cells and virions through a poorly characterized mechanism. Mutation of proline rich transmembrane protein 2 (PRRT2), a regulator of neurotransmitter release, at glycine-305 was previously linked to paroxysmal neurological disorders in humans. Here, we show that glycine-305 and the homologous site in IFITM3, glycine-95, drive protein oligomerization from within a GxxxG motif. Mutation of glycine-95 (and to a lesser extent, glycine-91) disrupted IFITM3 oligomerization and reduced its antiviral activity against Influenza A virus. An oligomerization-defective variant was used to reveal that IFITM3 promotes membrane rigidity in a glycine-95-dependent and amphipathic helix-dependent manner. Furthermore, a compound which counteracts virus inhibition by IFITM3, amphotericin B, prevented the IFITM3-mediated rigidification of membranes. Overall, these data suggest that IFITM3 oligomers inhibit virus-cell fusion by promoting membrane rigidity.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kazi Rahman

    HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2986-0007
  2. Charles A Coomer

    HIV Dynamics and Replication Program, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Saliha Majdoul

    HIV Dynamics and Replication Program, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0530-6354
  4. Selena Y Ding

    HIV Dynamics and Replication Program, National Cancer Institute, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4413-644X
  5. Sergi Padilla-Parra

    Department of Infectious Diseases, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8010-9481
  6. Alex A Compton

    HIV Dynamics and Replication Program, National Cancer Institute, Frederick, United States
    For correspondence
    alex.compton@nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7508-4953

Funding

National Institutes of Health (Intramural Research Program)

  • Kazi Rahman
  • Charles A Coomer
  • Saliha Majdoul
  • Selena Y Ding
  • Alex A Compton

European Research Council (ERC-2019-CoG-863869 FUSION)

  • Sergi Padilla-Parra

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,851
    views
  • 391
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kazi Rahman
  2. Charles A Coomer
  3. Saliha Majdoul
  4. Selena Y Ding
  5. Sergi Padilla-Parra
  6. Alex A Compton
(2020)
Homology-guided identification of a conserved motif linking the antiviral functions of IFITM3 to its oligomeric state
eLife 9:e58537.
https://doi.org/10.7554/eLife.58537

Share this article

https://doi.org/10.7554/eLife.58537

Further reading

    1. Ecology
    2. Evolutionary Biology
    Justine Boutry, Océane Rieu ... Fréderic Thomas
    Research Article

    While host phenotypic manipulation by parasites is a widespread phenomenon, whether tumors, which can be likened to parasite entities, can also manipulate their hosts is not known. Theory predicts that this should nevertheless be the case, especially when tumors (neoplasms) are transmissible. We explored this hypothesis in a cnidarian Hydra model system, in which spontaneous tumors can occur in the lab, and lineages in which such neoplastic cells are vertically transmitted (through host budding) have been maintained for over 15 years. Remarkably, the hydras with long-term transmissible tumors show an unexpected increase in the number of their tentacles, allowing for the possibility that these neoplastic cells can manipulate the host. By experimentally transplanting healthy as well as neoplastic tissues derived from both recent and long-term transmissible tumors, we found that only the long-term transmissible tumors were able to trigger the growth of additional tentacles. Also, supernumerary tentacles, by permitting higher foraging efficiency for the host, were associated with an increased budding rate, thereby favoring the vertical transmission of tumors. To our knowledge, this is the first evidence that, like true parasites, transmissible tumors can evolve strategies to manipulate the phenotype of their host.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zach Hensel
    Short Report

    Accurate estimation of the effects of mutations on SARS-CoV-2 viral fitness can inform public-health responses such as vaccine development and predicting the impact of a new variant; it can also illuminate biological mechanisms including those underlying the emergence of variants of concern. Recently, Lan et al. reported a model of SARS-CoV-2 secondary structure and its underlying dimethyl sulfate reactivity data (Lan et al., 2022). I investigated whether base reactivities and secondary structure models derived from them can explain some variability in the frequency of observing different nucleotide substitutions across millions of patient sequences in the SARS-CoV-2 phylogenetic tree. Nucleotide basepairing was compared to the estimated ‘mutational fitness’ of substitutions, a measurement of the difference between a substitution’s observed and expected frequency that is correlated with other estimates of viral fitness (Bloom and Neher, 2023). This comparison revealed that secondary structure is often predictive of substitution frequency, with significant decreases in substitution frequencies at basepaired positions. Focusing on the mutational fitness of C→U, the most common type of substitution, I describe C→U substitutions at basepaired positions that characterize major SARS-CoV-2 variants; such mutations may have a greater impact on fitness than appreciated when considering substitution frequency alone.