The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation

Abstract

While the mechanisms by which chemical signals control cell fate have been well studied, how mechanical inputs impact cell fate decisions are not well understood. Here, using the well-defined system of keratinocyte differentiation in the skin, we examine whether and how direct force transmission to the nucleus regulates epidermal cell fate. Using a molecular biosensor, we find that tension on the nucleus through Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes requires integrin engagement in undifferentiated epidermal stem cells, and is released during differentiation concomitant with decreased tension on A-type lamins. LINC complex ablation in mice reveals that LINC complexes are required to repress epidermal differentiation in vivo and in vitro and influence accessibility of epidermal differentiation genes, suggesting that force transduction from engaged integrins to the nucleus plays a role in maintaining keratinocyte progenitors. This work reveals a direct mechanotransduction pathway capable of relaying adhesion-specific signals to regulate cell fate.

Data availability

Sequencing data have been deposited as a single BioProject at NCBI with accession number PRJNA636991

The following data sets were generated

Article and author information

Author details

  1. Emma Carley

    Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  2. Rachel Stewart

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  3. Abigail G Zieman

    Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8236-207X
  4. Iman Jalilian

    Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  5. Diane E King

    Cell Biology, Yale School of Medicine, New Haven, United States
    Competing interests
    No competing interests declared.
  6. Amanda E Zubek

    Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  7. Samantha Lin

    Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    Competing interests
    No competing interests declared.
  8. Valerie Horsley

    Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
    For correspondence
    valerie.horsley@yale.edu
    Competing interests
    Valerie Horsley, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1254-5839
  9. Megan C King

    Department of Cell Biology, Yale School of Medicine, New Haven, United States
    For correspondence
    megan.king@yale.edu
    Competing interests
    Megan C King, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1688-2226

Funding

National Institutes of Health (R01 GM129308)

  • Emma Carley
  • Iman Jalilian
  • Megan C King

American Heart Association (16PRE27460000)

  • Rachel Stewart

Ludwig Family Foundation

  • Rachel Stewart
  • Megan C King

National Institutes of Health (R01 AR060295)

  • Valerie Horsley

National Institutes of Health (R01 AR069550)

  • Valerie Horsley

National Institutes of Health (T32 AR007016)

  • Abigail G Zieman

National Institutes of Health (T32 GM007223)

  • Emma Carley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Elaine Fuchs, Howard Hughes Medical Institute, The Rockefeller University, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal care and experimental procedures were conducted in accord with requirements approved by the Institutional Animal Care and Use Committee of Yale University. IACUC Approval 2018-11248.

Version history

  1. Received: May 5, 2020
  2. Accepted: March 26, 2021
  3. Accepted Manuscript published: March 29, 2021 (version 1)
  4. Version of Record published: April 16, 2021 (version 2)
  5. Version of Record updated: January 18, 2024 (version 3)

Copyright

© 2021, Carley et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,473
    Page views
  • 678
    Downloads
  • 31
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emma Carley
  2. Rachel Stewart
  3. Abigail G Zieman
  4. Iman Jalilian
  5. Diane E King
  6. Amanda E Zubek
  7. Samantha Lin
  8. Valerie Horsley
  9. Megan C King
(2021)
The LINC complex transmits integrin-dependent tension to the nuclear lamina and represses epidermal differentiation
eLife 10:e58541.
https://doi.org/10.7554/eLife.58541

Share this article

https://doi.org/10.7554/eLife.58541

Further reading

    1. Cell Biology
    2. Neuroscience
    Rachel L Doser, Kaz M Knight ... Frederic J Hoerndli
    Research Article

    Our understanding of mitochondrial signaling in the nervous system has been limited by the technical challenge of analyzing mitochondrial function in vivo. In the transparent genetic model Caenorhabditis elegans, we were able to manipulate and measure mitochondrial ROS (reactive oxygen species) signaling of individual mitochondria as well as neuronal activity of single neurons in vivo. Using this approach, we provide evidence supporting a novel role for mitochondrial ROS signaling in dendrites of excitatory glutamatergic C. elegans interneurons. Specifically, we show that following neuronal activity, dendritic mitochondria take up calcium (Ca2+) via the mitochondrial Ca2+ uniporter MCU-1 that results in an upregulation of mitochondrial ROS production. We also observed that mitochondria are positioned in close proximity to synaptic clusters of GLR-1, the C. elegans ortholog of the AMPA subtype of glutamate receptors that mediate neuronal excitation. We show that synaptic recruitment of GLR-1 is upregulated when MCU-1 function is pharmacologically or genetically impaired but is downregulated by mitoROS signaling. Thus, signaling from postsynaptic mitochondria may regulate excitatory synapse function to maintain neuronal homeostasis by preventing excitotoxicity and energy depletion.

    1. Cell Biology
    2. Developmental Biology
    Houyu Zhang, Yan Li ... Meng Xie
    Research Article

    Perirenal adipose tissue (PRAT) is a unique visceral depot that contains a mixture of brown and white adipocytes. The origin and plasticity of such cellular heterogeneity remains unknown. Here, we combine single-nucleus RNA sequencing with genetic lineage tracing to reveal the existence of a distinct subpopulation of Ucp1-&Cidea+ adipocytes that arises from brown-to-white conversion during postnatal life in the periureter region of mouse PRAT. Cold exposure restores Ucp1 expression and a thermogenic phenotype in this subpopulation. These cells have a transcriptome that is distinct from subcutaneous beige adipocytes and may represent a unique type of cold-recruitable adipocytes. These results pave the way for studies of PRAT physiology and mechanisms controlling the plasticity of brown/white adipocyte phenotypes.