Structural basis for histone variant H3tK27me3 recognition by PHF1 and PHF19

  1. Cheng Dong
  2. Reiko Nakagawa
  3. Kyohei Oyama
  4. Yusuke Yamamoto
  5. Weilian Zhang
  6. Aiping Dong
  7. Yanjun Li
  8. Yuriko Yoshimura
  9. Hiroyuki Kamiya
  10. Jun-ichi Nakayama
  11. Jun Ueda
  12. Jinrong Min  Is a corresponding author
  1. Tianjin Medical University, China
  2. RIKEN, Japan
  3. Asahikawa Medical University, Japan
  4. University of Toronto, Canada
  5. National Institute for Basic Biology, Japan
  6. National Institute of Basic Biology, Japan

Abstract

The PRC2 (Polycomb repressive complex 2) complex is a multi-component histone H3K27 methyltransferase, best known for silencing Hox genes during embryonic development. The Polycomb-like proteins PHF1, MTF2 and PHF19 are critical components of PRC2 by stimulating its catalytic activity in embryonic stem (ES) cells. The Tudor domains of PHF1/19 have been previously shown to be readers of H3K36me3 in vitro. However, some other studies suggest that PHF1 and PHF19 co-localize with the H3K27me3 mark, but not H3K36me3 in cells. Here, we provide further evidence that PHF1 co-localizes with H3t in testis, and its Tudor domain preferentially binds to H3tK27me3 over canonical H3K27me3 in vitro. Our complex structures of the Tudor domains of PHF1 and PHF19 with H3tK27me3 shed light on the molecular basis for preferential recognition of H3tK27me3 by PHF1 and PHF19 over canonical H3K27me3, implicating that H3tK27me3 might be a physiological ligand of PHF1/19.

Data availability

Diffraction data have been deposited in PDB under the accession codes 6WAT, 6WAU, 6WAV

The following data sets were generated

Article and author information

Author details

  1. Cheng Dong

    Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Reiko Nakagawa

    Laboratory for Phyloinformatics, RIKEN, Kobe, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6178-2945
  3. Kyohei Oyama

    Department of Cardiac Surgery, Asahikawa Medical University, Asahikawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  4. Yusuke Yamamoto

    Department of Cardiac Surgery, Asahikawa Medical University, Asahikawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  5. Weilian Zhang

    Structural Genomics Consortium, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Aiping Dong

    Structural Genomics Consortium, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Yanjun Li

    Structural Genomics Consortium, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Yuriko Yoshimura

    Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Hiroyuki Kamiya

    Department of Cardiac Surgery, Asahikawa Medical University, Asahikawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  10. Jun-ichi Nakayama

    Division of Chromatin Regulation, National Institute of Basic Biology, Okazaki, Japan
    Competing interests
    The authors declare that no competing interests exist.
  11. Jun Ueda

    Centre for Advanced Research and Education, Asahikawa Medical University, Asahikawa, Japan
    Competing interests
    The authors declare that no competing interests exist.
  12. Jinrong Min

    Structural Genomics Consortium, University of Toronto, Toronto, Canada
    For correspondence
    jr.min@utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5210-3130

Funding

National Natural Science Foundation of China (31900865)

  • Cheng Dong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Dong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,831
    views
  • 261
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Cheng Dong
  2. Reiko Nakagawa
  3. Kyohei Oyama
  4. Yusuke Yamamoto
  5. Weilian Zhang
  6. Aiping Dong
  7. Yanjun Li
  8. Yuriko Yoshimura
  9. Hiroyuki Kamiya
  10. Jun-ichi Nakayama
  11. Jun Ueda
  12. Jinrong Min
(2020)
Structural basis for histone variant H3tK27me3 recognition by PHF1 and PHF19
eLife 9:e58675.
https://doi.org/10.7554/eLife.58675

Share this article

https://doi.org/10.7554/eLife.58675

Further reading

    1. Structural Biology and Molecular Biophysics
    Jinsai Shang, Douglas J Kojetin
    Research Advance

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor transcription factor that regulates gene expression programs in response to ligand binding. Endogenous and synthetic ligands, including covalent antagonist inhibitors GW9662 and T0070907, are thought to compete for the orthosteric pocket in the ligand-binding domain (LBD). However, we previously showed that synthetic PPARγ ligands can cooperatively cobind with and reposition a bound endogenous orthosteric ligand to an alternate site, synergistically regulating PPARγ structure and function (Shang et al., 2018). Here, we reveal the structural mechanism of cobinding between a synthetic covalent antagonist inhibitor with other synthetic ligands. Biochemical and NMR data show that covalent inhibitors weaken—but do not prevent—the binding of other ligands via an allosteric mechanism, rather than direct ligand clashing, by shifting the LBD ensemble toward a transcriptionally repressive conformation, which structurally clashes with orthosteric ligand binding. Crystal structures reveal different cobinding mechanisms including alternate site binding to unexpectedly adopting an orthosteric binding mode by altering the covalent inhibitor binding pose. Our findings highlight the significant flexibility of the PPARγ orthosteric pocket, its ability to accommodate multiple ligands, and demonstrate that GW9662 and T0070907 should not be used as chemical tools to inhibit ligand binding to PPARγ.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.