1. Neuroscience
Download icon

Typical and atypical language brain organization based on intrinsic connectivity and multitask functional asymmetries

Research Article
  • Cited 0
  • Views 1,599
  • Annotations
Cite this article as: eLife 2020;9:e58722 doi: 10.7554/eLife.58722

Abstract

Based on the joint investigation in 287 healthy volunteers (150 Left-Handers (LH)) of language task-induced asymmetries and intrinsic connectivity strength of the sentence-processing supramodal network, we show that individuals with atypical rightward language lateralization (N = 30, 25 LH) do not rely on an organization that simply mirrors that of typical leftward lateralized individuals. Actually, the resting-state organization in the atypicals showed that their sentence processing was underpinned by left and right networks both wired for language processing and highly interacting by strong interhemispheric intrinsic connectivity and larger corpus callosum volume. Such a loose hemispheric specialization for language permits the hosting of language in either the left and/or right hemisphere as assessed by a very high incidence of dissociations across various language task-induced asymmetries in this group.

Article and author information

Author details

  1. Loïc Labache

    Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, CNRS, CEA, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5733-0743
  2. Bernard Mazoyer

    Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, CNRS, CEA, Bordeaux, France
    For correspondence
    bernard.mazoyer@u-bordeaux.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0970-2837
  3. Marc Joliot

    Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, CNRS, CEA, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7792-308X
  4. Fabrice Crivello

    Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, CNRS, CEA, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Isabelle Hesling

    Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, CNRS, CEA, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Nathalie Tzourio-Mazoyer

    Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, CNRS, CEA, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANR 16-LCV2-0006-01)

  • Marc Joliot

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The Comité pour la Protection des Personnes dans la Recherche Biomédicale de Basse-Normandie approved the study protocol. All participants gave their informed, written consent, and received an allowance for their participation.

Reviewing Editor

  1. Ingrid S Johnsrude, University of Western Ontario, Canada

Publication history

  1. Received: May 8, 2020
  2. Accepted: October 16, 2020
  3. Accepted Manuscript published: October 16, 2020 (version 1)
  4. Version of Record published: November 2, 2020 (version 2)

Copyright

© 2020, Labache et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,599
    Page views
  • 125
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Daniela Saderi et al.
    Research Article Updated

    Both generalized arousal and engagement in a specific task influence sensory neural processing. To isolate effects of these state variables in the auditory system, we recorded single-unit activity from primary auditory cortex (A1) and inferior colliculus (IC) of ferrets during a tone detection task, while monitoring arousal via changes in pupil size. We used a generalized linear model to assess the influence of task engagement and pupil size on sound-evoked activity. In both areas, these two variables affected independent neural populations. Pupil size effects were more prominent in IC, while pupil and task engagement effects were equally likely in A1. Task engagement was correlated with larger pupil; thus, some apparent effects of task engagement should in fact be attributed to fluctuations in pupil size. These results indicate a hierarchy of auditory processing, where generalized arousal enhances activity in midbrain, and effects specific to task engagement become more prominent in cortex.

    1. Neuroscience
    Pratish Thakore et al.
    Research Article

    Cerebral blood flow is dynamically regulated by neurovascular coupling to meet the dynamic metabolic demands of the brain. We hypothesized that TRPA1 channels in capillary endothelial cells are stimulated by neuronal activity and instigate a propagating retrograde signal that dilates upstream parenchymal arterioles to initiate functional hyperemia. We find that activation of TRPA1 in capillary beds and post-arteriole transitional segments with mural cell coverage initiates retrograde signals that dilate upstream arterioles. These signals exhibit a unique mode of biphasic propagation. Slow, short-range intercellular Ca2+ signals in the capillary network are converted to rapid electrical signals in transitional segments that propagate to and dilate upstream arterioles. We further demonstrate that TRPA1 is necessary for functional hyperemia and neurovascular coupling within the somatosensory cortex of mice in vivo. These data establish endothelial cell TRPA1 channels as neuronal activity sensors that initiate microvascular vasodilatory responses to redirect blood to regions of metabolic demand.