Typical and atypical language brain organization based on intrinsic connectivity and multitask functional asymmetries

Abstract

Based on the joint investigation in 287 healthy volunteers (150 Left-Handers (LH)) of language task-induced asymmetries and intrinsic connectivity strength of the sentence-processing supramodal network, we show that individuals with atypical rightward language lateralization (N = 30, 25 LH) do not rely on an organization that simply mirrors that of typical leftward lateralized individuals. Actually, the resting-state organization in the atypicals showed that their sentence processing was underpinned by left and right networks both wired for language processing and highly interacting by strong interhemispheric intrinsic connectivity and larger corpus callosum volume. Such a loose hemispheric specialization for language permits the hosting of language in either the left and/or right hemisphere as assessed by a very high incidence of dissociations across various language task-induced asymmetries in this group.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures and tables

The following data sets were generated

Article and author information

Author details

  1. Loïc Labache

    Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, CNRS, CEA, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5733-0743
  2. Bernard Mazoyer

    Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, CNRS, CEA, Bordeaux, France
    For correspondence
    bernard.mazoyer@u-bordeaux.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0970-2837
  3. Marc Joliot

    Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, CNRS, CEA, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7792-308X
  4. Fabrice Crivello

    Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, CNRS, CEA, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Isabelle Hesling

    Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, CNRS, CEA, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.
  6. Nathalie Tzourio-Mazoyer

    Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, CNRS, CEA, Bordeaux, France
    Competing interests
    The authors declare that no competing interests exist.

Funding

Agence Nationale de la Recherche (ANR 16-LCV2-0006-01)

  • Marc Joliot

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ingrid S Johnsrude, University of Western Ontario, Canada

Ethics

Human subjects: The Comité pour la Protection des Personnes dans la Recherche Biomédicale de Basse-Normandie approved the study protocol. All participants gave their informed, written consent, and received an allowance for their participation.

Version history

  1. Received: May 8, 2020
  2. Accepted: October 16, 2020
  3. Accepted Manuscript published: October 16, 2020 (version 1)
  4. Version of Record published: November 2, 2020 (version 2)

Copyright

© 2020, Labache et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,465
    views
  • 253
    downloads
  • 18
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Loïc Labache
  2. Bernard Mazoyer
  3. Marc Joliot
  4. Fabrice Crivello
  5. Isabelle Hesling
  6. Nathalie Tzourio-Mazoyer
(2020)
Typical and atypical language brain organization based on intrinsic connectivity and multitask functional asymmetries
eLife 9:e58722.
https://doi.org/10.7554/eLife.58722

Share this article

https://doi.org/10.7554/eLife.58722

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.