Human primed ILCPs support endothelial activation through NF-κB signaling

  1. Giulia Vanoni
  2. Giuseppe Ercolano
  3. Simona Candiani
  4. Mariangela Rutigliani
  5. Mariangela Lanata
  6. Laurent Derré
  7. Emanuela Marcenaro
  8. Pascal Schneider
  9. Pedro Romero
  10. Camilla Jandus  Is a corresponding author
  11. Sara Trabanelli  Is a corresponding author
  1. University of Lausanne - Ludwig Institute for Cancer Research, Switzerland
  2. University of Geneva, Switzerland
  3. University of Genova, Italy
  4. E.O. Galliera Hospital, Italy
  5. University Hospital of Lausanne (CHUV), Switzerland
  6. University of Lausanne, Switzerland

Abstract

Innate lymphoid cells (ILCs) represent the most recently identified subset of effector lymphocytes, with key roles in the orchestration of early immune responses. Despite their established involvement in the pathogenesis of many inflammatory disorders, the role of ILCs in cancer remains poorly defined. Here we assessed whether human ILCs can actively interact with the endothelium to promote tumor growth control, favoring immune cell adhesion. We show that, among all ILC subsets, ILCPs elicited the strongest upregulation of adhesion molecules in ECs in vitro, mainly in a contact-dependent manner through the TNFR- and RANK-dependent engagement of the NF-κB pathway. Moreover, the ILCP-mediated activation of the ECs resulted to be functional by fostering the adhesion of other innate and adaptive immune cells. Interestingly, pre-exposure of ILCPs to human tumor cell lines strongly impaired this capacity. Hence, the ILCP-EC interaction might represent an attractive target to regulate the immune cell trafficking to tumor sites and, therefore, the establishment of an anti-tumor immune response.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Giulia Vanoni

    Department of Oncology, University of Lausanne - Ludwig Institute for Cancer Research, Epalinges, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3199-2412
  2. Giuseppe Ercolano

    Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Simona Candiani

    Department of Earth Science, Environment and Life, University of Genova, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Mariangela Rutigliani

    Department of Laboratory and Service, Histological and Anatomical Pathology, E.O. Galliera Hospital, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Mariangela Lanata

    Department of Laboratory and Service, Histological and Anatomical Pathology,, E.O. Galliera Hospital, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Laurent Derré

    Department of Urology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Emanuela Marcenaro

    Department of Experimental Medicine and Centre of Excellence for Biomedical Research, University of Genova, Genova, Italy
    Competing interests
    The authors declare that no competing interests exist.
  8. Pascal Schneider

    Department of Biochemistry, University of Lausanne - Ludwig Institute for Cancer Research, Epalinges, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  9. Pedro Romero

    Department of Oncology, University of Lausanne, Epalinges, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  10. Camilla Jandus

    Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
    For correspondence
    camilla.jandus@unige.ch
    Competing interests
    The authors declare that no competing interests exist.
  11. Sara Trabanelli

    Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
    For correspondence
    sara.trabanelli@unige.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8648-1324

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (PRIMA PR00P3_179727)

  • Camilla Jandus

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (FNS 31003A_156469)

  • Pedro Romero

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030A_176256)

  • Pascal Schneider

Compagnia di San Paolo (2019.866)

  • Emanuela Marcenaro

Compagnia di San Paolo (2019.866)

  • Simona Candiani

Associazione Italiana per la Ricerca sul Cancro (AIRC 5x1000-21147)

  • Emanuela Marcenaro

Associazione Italiana per la Ricerca sul Cancro (AIRC 5x1000-21147)

  • Simona Candiani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Vanoni et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 907
    views
  • 132
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Giulia Vanoni
  2. Giuseppe Ercolano
  3. Simona Candiani
  4. Mariangela Rutigliani
  5. Mariangela Lanata
  6. Laurent Derré
  7. Emanuela Marcenaro
  8. Pascal Schneider
  9. Pedro Romero
  10. Camilla Jandus
  11. Sara Trabanelli
(2021)
Human primed ILCPs support endothelial activation through NF-κB signaling
eLife 10:e58838.
https://doi.org/10.7554/eLife.58838

Share this article

https://doi.org/10.7554/eLife.58838

Further reading

    1. Cancer Biology
    Ismail M Meraz, Mourad Majidi ... Jack A Roth
    Research Article

    Expression of NPRL2/TUSC4, a tumor-suppressor gene, is reduced in many cancers including NSCLC. Restoration of NPRL2 induces DNA damage, apoptosis, and cell-cycle arrest. We investigated NPRL2 antitumor immune responses in aPD1R/KRAS/STK11mt NSCLC in humanized-mice. Humanized-mice were generated by transplanting fresh human cord blood-derived CD34 stem cells into sub-lethally irradiated NSG mice. Lung-metastases were developed from KRAS/STK11mt/aPD1R A549 cells and treated with NPRL2 w/wo pembrolizumab. NPRL2-treatment reduced lung metastases significantly, whereas pembrolizumab was ineffective. Antitumor effect was greater in humanized than non-humanized-mice. NPRL2 + pembrolizumab was not synergistic in KRAS/STK11mt/aPD1R tumors but was synergistic in KRASwt/aPD1S H1299. NPRL2 also showed a significant antitumor effect on KRASmt/aPD1R LLC2 syngeneic-tumors. The antitumor effect was correlated with increased infiltration of human cytotoxic-T, HLA-DR+DC, CD11c+DC, and downregulation of myeloid and regulatory-T cells in TME. Antitumor effect was abolished upon in-vivo depletion of CD8-T, macrophages, and CD4-T cells whereas remained unaffected upon NK-cell depletion. A distinctive protein-expression profile was found after NPRL2 treatment. IFNγ, CD8b, and TBX21 associated with T-cell functions were significantly increased, whereas FOXP3, TGFB1/B2, and IL-10RA were strongly inhibited by NPRL2. A list of T-cell co-inhibitory molecules was also downregulated. Restoration of NPRL2 exhibited significantly slower tumor growth in humanized-mice, which was associated with increased presence of human cytotoxic-T, and DC and decreased percentage of Treg, MDSC, and TAM in TME. NPRL2-stable cells showed a substantial increase in colony-formation inhibition and heightened sensitivity to carboplatin. Stable-expression of NPRL2 resulted in the downregulation of MAPK and AKT-mTOR signaling. Taken-together, NPRL2 gene-therapy induces antitumor activity on KRAS/STK11mt/aPD1R tumors through DC-mediated antigen-presentation and cytotoxic immune-cell activation.

    1. Biochemistry and Chemical Biology
    2. Cancer Biology
    Flavie Coquel, Sing-Zong Ho ... Philippe Pasero
    Research Article

    Cancer cells display high levels of oncogene-induced replication stress (RS) and rely on DNA damage checkpoint for viability. This feature is exploited by cancer therapies to either increase RS to unbearable levels or inhibit checkpoint kinases involved in the DNA damage response. Thus far, treatments that combine these two strategies have shown promise but also have severe adverse effects. To identify novel, better-tolerated anticancer combinations, we screened a collection of plant extracts and found two natural compounds from the plant, Psoralea corylifolia, that synergistically inhibit cancer cell proliferation. Bakuchiol inhibited DNA replication and activated the checkpoint kinase CHK1 by targeting DNA polymerases. Isobavachalcone interfered with DNA double-strand break repair by inhibiting the checkpoint kinase CHK2 and DNA end resection. The combination of bakuchiol and isobavachalcone synergistically inhibited cancer cell proliferation in vitro. Importantly, it also prevented tumor development in xenografted NOD/SCID mice. The synergistic effect of inhibiting DNA replication and CHK2 signaling identifies a vulnerability of cancer cells that might be exploited by using clinically approved inhibitors in novel combination therapies.