Memory: How the brain constructs dreams

Deep inside the temporal lobe of the brain, the hippocampus has a central role in our ability to remember, imagine and dream.
  1. Erin J Wamsley  Is a corresponding author
  1. Department of Psychology and Program in Neuroscience, Furman University, United States

Our most vivid dreams are a remarkable replication of reality, combining disparate objects, actions and perceptions into a richly detailed hallucinatory experience. How does our brain accomplish this? It has long been suspected that the hippocampus contributes to dreaming, in part due to its close association with memory: according to one estimate, about half of all dreams contain at least one element originating from a specific experience while the subject was awake (Fosse et al., 2003). Although these dreams are rarely a faithful replication of any one memory, fragments of various recent experiences intermingle with other memories (usually related remote and semantic memories) to create a novel dream. Given all this, one might guess that dreams are created by those regions of the brain responsible for memory. However, studies dating back to the 1960s have suggested that patients with a damaged hippocampus still dream (Torda, 1969a; Torda, 1969b; Solms, 2014) and, somewhat amazingly, such patients can have dreams involving recent experiences of which they have no conscious memory (Stickgold et al., 2000)!

But are the dreams of patients with damage to hippocampus truly ‘normal’? Or alternatively, might such damage, while not preventing dreams, alter the form in which they are expressed? Indeed, there is reason to think that the hippocampus supports crucial aspects of dream construction beyond the simple insertion of memories. Recent work in the cognitive neurosciences has established that the hippocampus, in addition to being involved in the formation of memories, is also part of a brain system that is involved in using memory to construct novel imagined scenarios and simulate possible future events (Hassabis et al., 2007; Hassabis and Maguire, 2009; Schacter and Addis, 2007). As a result, patients without a hippocampus find it difficult to imagine scenes that are coherent, possibly because the hippocampus is responsible for combining different elements of memory into a spatially coherent whole.

Now, in eLife, Eleanor Maguire of University College London (UCL) and colleagues – including Goffredina Spanò as first author – report that the dreams of four amnesia patients lacking a hippocampal memory system do not have the richness of detail found in most dreams (Spanò et al., 2020). Besides reporting substantially fewer dreams than the patients in a control group, the four patients with amnesia also reported dreams that were markedly less detailed: their dreams contained fewer details of spatial location (e.g., descriptions like ‘behind the bar’ or ‘to my left I can see’) and fewer sensory details. These observations support the emerging view that dreams are generated by networks in the brain similar to the networks that are involved in recalling memories and constructing imagined scenarios during wakefulness (Fox et al., 2013; Graveline and Wamsley, 2015). Like memory and imagination, a vivid dream requires the construction of detailed, memory-based imagined scenes – and this process appears to rely on the hippocampus.

These observations partially echo the reports of Clara Torda from more than a half century ago, who characterized the dreams of amnesia patients as ‘shorter’, ‘simpler’, ‘repetitious’ and ‘stereotyped’ (Torda, 1969a). But Torda’s papers were written before the invention of noninvasive methods for imaging the brain, so it is not completely clear which structures may have been damaged in her patients. In contrast, the patients in the work of Spanò et al. all have well-characterized lesion sites with damage restricted solely to the hippocampus. This allows us to confidently attribute their impoverished dreams to the loss of the hippocampus itself, rather than to other regions of nearby temporal lobe which might also have a role in dreaming.

As with many studies of rare neurological patients, the latest work must be interpreted with caution due to the small sample size. For example, patient dreams were not significantly shorter than control dreams, leading to an apparently selective deficit in specific types of details reported (such as spatial details and sensory details), rather than a general deficit in the length of the dream. On average, however, the control dreams contained more than twice the number of informative words as the patient dreams, and the lack of a statistical difference between the two groups may be a mere artifact of the low sample size.

Nonetheless, these observations and a handful of similar studies are helping us to understand how the hippocampus contributes to the dreaming process. The work of Spanò et al. – who are based at UCL, the Royal Free Hospital in London, University Hospital Bonn and the universities of Arizona and Oxford – suggests hippocampal damage disrupts dreaming in ways that mirror how it also disrupts imagination. This suggests that, rather than being an entirely distinct phenomenon, dreaming is a part of a continuum of spontaneous, constructive thought and imagery continuously generated across the sleep and waking states.

References

    1. Graveline YM
    2. Wamsley EJ
    (2015) Dreaming and waking cognition
    Translational Issues in Psychological Science 1:97–105.
    https://doi.org/10.1037/tps0000018
    1. Hassabis D
    2. Maguire EA
    (2009) The construction system of the brain
    Philosophical Transactions of the Royal Society B: Biological Sciences 364:1263–1271.
    https://doi.org/10.1098/rstb.2008.0296

Article and author information

Author details

  1. Erin J Wamsley

    Erin J Wamsley is in the Department of Psychology and Program in Neuroscience, Furman University, Greenville, United States

    For correspondence
    erin.wamsley@furman.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4465-3890

Publication history

  1. Version of Record published:

Copyright

© 2020, Wamsley

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 50,252
    views
  • 846
    downloads
  • 3
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erin J Wamsley
(2020)
Memory: How the brain constructs dreams
eLife 9:e58874.
https://doi.org/10.7554/eLife.58874
  1. Further reading

Further reading

    1. Neuroscience
    Cassandra Avila, Martin Sarter
    Research Article

    Turning on cue or stopping at a red light requires attending to such cues to select action sequences, or suppress action, in accordance with learned cue-associated action rules. Cortico-striatal projections are an essential part of the brain’s attention–motor interface. Glutamate-sensing microelectrode arrays were used to measure glutamate transients in the dorsomedial striatum (DMS) of male and female rats walking a treadmill and executing cued turns and stops. Prelimbic–DMS projections were chemogenetically inhibited to determine their behavioral necessity and the cortico-striatal origin of cue-evoked glutamate transients. Furthermore, we investigated rats exhibiting preferably goal-directed (goal trackers, GTs) versus cue-driven attention (sign-trackers, STs), to determine the impact of such cognitive-motivational biases on cortico-striatal control. GTs executed more cued turns and initiated such turns more slowly than STs. During turns, but not missed turns or cued stops, cue-evoked glutamate concentrations were higher in GTs than in STs. In STs, turn cue-locked glutamate concentrations frequently peaked twice or three times, contrasting with predominately single peaks in GTs. In GTs, but not STs, inhibition of prelimbic–DMS projections attenuated turn rates and turn cue-evoked glutamate concentrations and increased the number of turn cue-locked glutamate peaks. These findings indicate that turn cue-evoked glutamate release in GTs is tightly controlled by cortico-striatal neuronal activity. In contrast, in STs, glutamate release from DMS glutamatergic terminals may be regulated by other striatal circuitry, preferably mediating cued suppression of action and reward tracking. As cortico-striatal dysfunction has been hypothesized to contribute to a wide range of disorders, including complex movement control deficits in Parkinson’s disease and compulsive drug taking, the demonstration of phenotypic contrasts in cortico-striatal control implies the presence of individual vulnerabilities for such disorders.

    1. Neuroscience
    Célian Bimbard, Flóra Takács ... Philip Coen
    Tools and Resources

    Electrophysiology has proven invaluable to record neural activity, and the development of Neuropixels probes dramatically increased the number of recorded neurons. These probes are often implanted acutely, but acute recordings cannot be performed in freely moving animals and the recorded neurons cannot be tracked across days. To study key behaviors such as navigation, learning, and memory formation, the probes must be implanted chronically. An ideal chronic implant should (1) allow stable recordings of neurons for weeks; (2) allow reuse of the probes after explantation; (3) be light enough for use in mice. Here, we present the ‘Apollo Implant’, an open-source and editable device that meets these criteria and accommodates up to two Neuropixels 1.0 or 2.0 probes. The implant comprises a ‘payload’ module which is attached to the probe and is recoverable, and a ‘docking’ module which is cemented to the skull. The design is adjustable, making it easy to change the distance between probes, the angle of insertion, and the depth of insertion. We tested the implant across eight labs in head-fixed mice, freely moving mice, and freely moving rats. The number of neurons recorded across days was stable, even after repeated implantations of the same probe. The Apollo implant provides an inexpensive, lightweight, and flexible solution for reusable chronic Neuropixels recordings.