Memory: How the brain constructs dreams

Deep inside the temporal lobe of the brain, the hippocampus has a central role in our ability to remember, imagine and dream.
  1. Erin J Wamsley  Is a corresponding author
  1. Department of Psychology and Program in Neuroscience, Furman University, United States

Our most vivid dreams are a remarkable replication of reality, combining disparate objects, actions and perceptions into a richly detailed hallucinatory experience. How does our brain accomplish this? It has long been suspected that the hippocampus contributes to dreaming, in part due to its close association with memory: according to one estimate, about half of all dreams contain at least one element originating from a specific experience while the subject was awake (Fosse et al., 2003). Although these dreams are rarely a faithful replication of any one memory, fragments of various recent experiences intermingle with other memories (usually related remote and semantic memories) to create a novel dream. Given all this, one might guess that dreams are created by those regions of the brain responsible for memory. However, studies dating back to the 1960s have suggested that patients with a damaged hippocampus still dream (Torda, 1969a; Torda, 1969b; Solms, 2014) and, somewhat amazingly, such patients can have dreams involving recent experiences of which they have no conscious memory (Stickgold et al., 2000)!

But are the dreams of patients with damage to hippocampus truly ‘normal’? Or alternatively, might such damage, while not preventing dreams, alter the form in which they are expressed? Indeed, there is reason to think that the hippocampus supports crucial aspects of dream construction beyond the simple insertion of memories. Recent work in the cognitive neurosciences has established that the hippocampus, in addition to being involved in the formation of memories, is also part of a brain system that is involved in using memory to construct novel imagined scenarios and simulate possible future events (Hassabis et al., 2007; Hassabis and Maguire, 2009; Schacter and Addis, 2007). As a result, patients without a hippocampus find it difficult to imagine scenes that are coherent, possibly because the hippocampus is responsible for combining different elements of memory into a spatially coherent whole.

Now, in eLife, Eleanor Maguire of University College London (UCL) and colleagues – including Goffredina Spanò as first author – report that the dreams of four amnesia patients lacking a hippocampal memory system do not have the richness of detail found in most dreams (Spanò et al., 2020). Besides reporting substantially fewer dreams than the patients in a control group, the four patients with amnesia also reported dreams that were markedly less detailed: their dreams contained fewer details of spatial location (e.g., descriptions like ‘behind the bar’ or ‘to my left I can see’) and fewer sensory details. These observations support the emerging view that dreams are generated by networks in the brain similar to the networks that are involved in recalling memories and constructing imagined scenarios during wakefulness (Fox et al., 2013; Graveline and Wamsley, 2015). Like memory and imagination, a vivid dream requires the construction of detailed, memory-based imagined scenes – and this process appears to rely on the hippocampus.

These observations partially echo the reports of Clara Torda from more than a half century ago, who characterized the dreams of amnesia patients as ‘shorter’, ‘simpler’, ‘repetitious’ and ‘stereotyped’ (Torda, 1969a). But Torda’s papers were written before the invention of noninvasive methods for imaging the brain, so it is not completely clear which structures may have been damaged in her patients. In contrast, the patients in the work of Spanò et al. all have well-characterized lesion sites with damage restricted solely to the hippocampus. This allows us to confidently attribute their impoverished dreams to the loss of the hippocampus itself, rather than to other regions of nearby temporal lobe which might also have a role in dreaming.

As with many studies of rare neurological patients, the latest work must be interpreted with caution due to the small sample size. For example, patient dreams were not significantly shorter than control dreams, leading to an apparently selective deficit in specific types of details reported (such as spatial details and sensory details), rather than a general deficit in the length of the dream. On average, however, the control dreams contained more than twice the number of informative words as the patient dreams, and the lack of a statistical difference between the two groups may be a mere artifact of the low sample size.

Nonetheless, these observations and a handful of similar studies are helping us to understand how the hippocampus contributes to the dreaming process. The work of Spanò et al. – who are based at UCL, the Royal Free Hospital in London, University Hospital Bonn and the universities of Arizona and Oxford – suggests hippocampal damage disrupts dreaming in ways that mirror how it also disrupts imagination. This suggests that, rather than being an entirely distinct phenomenon, dreaming is a part of a continuum of spontaneous, constructive thought and imagery continuously generated across the sleep and waking states.

References

    1. Graveline YM
    2. Wamsley EJ
    (2015) Dreaming and waking cognition
    Translational Issues in Psychological Science 1:97–105.
    https://doi.org/10.1037/tps0000018
    1. Hassabis D
    2. Maguire EA
    (2009) The construction system of the brain
    Philosophical Transactions of the Royal Society B: Biological Sciences 364:1263–1271.
    https://doi.org/10.1098/rstb.2008.0296

Article and author information

Author details

  1. Erin J Wamsley

    Erin J Wamsley is in the Department of Psychology and Program in Neuroscience, Furman University, Greenville, United States

    For correspondence
    erin.wamsley@furman.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4465-3890

Publication history

  1. Version of Record published: June 8, 2020 (version 1)

Copyright

© 2020, Wamsley

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 35,106
    Page views
  • 474
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Erin J Wamsley
(2020)
Memory: How the brain constructs dreams
eLife 9:e58874.
https://doi.org/10.7554/eLife.58874
  1. Further reading

Further reading

    1. Developmental Biology
    2. Neuroscience
    Jennifer M Lin, Tyler A Mitchell ... Paolo Emanuele Forni
    Research Article Updated

    Neuronal identity dictates the position in an epithelium, and the ability to detect, process, and transmit specific signals to specified targets. Transcription factors (TFs) determine cellular identity via direct modulation of genetic transcription and recruiting chromatin modifiers. However, our understanding of the mechanisms that define neuronal identity and their magnitude remain a critical barrier to elucidate the etiology of congenital and neurodegenerative disorders. The rodent vomeronasal organ provides a unique system to examine in detail the molecular mechanisms underlying the differentiation and maturation of chemosensory neurons. Here, we demonstrated that the identity of postmitotic/maturing vomeronasal sensory neurons (VSNs), and vomeronasal-dependent behaviors can be reprogrammed through the rescue of Tfap2e/AP-2ε expression in the Tfap2eNull mice, and partially reprogrammed by inducing ectopic Tfap2e expression in mature apical VSNs. We suggest that the TF Tfap2e can reprogram VSNs bypassing cellular plasticity restrictions, and that it directly controls the expression of batteries of vomeronasal genes.

    1. Neuroscience
    David S Jacobs, Madeleine C Allen ... Bita Moghaddam
    Research Advance Updated

    Previously, we developed a novel model for anxiety during motivated behavior by training rats to perform a task where actions executed to obtain a reward were probabilistically punished and observed that after learning, neuronal activity in the ventral tegmental area (VTA) and dorsomedial prefrontal cortex (dmPFC) represent the relationship between action and punishment risk (Park and Moghaddam, 2017). Here, we used male and female rats to expand on the previous work by focusing on neural changes in the dmPFC and VTA that were associated with the learning of probabilistic punishment, and anxiolytic treatment with diazepam after learning. We find that adaptive neural responses of dmPFC and VTA during the learning of anxiogenic contingencies are independent from the punisher experience and occur primarily during the peri-action and reward period. Our results also identify peri-action ramping of VTA neural calcium activity, and VTA-dmPFC correlated activity, as potential markers for the anxiolytic properties of diazepam.