Extrinsic Activin signaling cooperates with an intrinsic temporal program to increase mushroom body neuronal diversity
Abstract
Temporal patterning of neural progenitors leads to the sequential production of diverse neuronal types. To better understand how extrinsic cues interact with intrinsic temporal programs to contribute to temporal patterning, we studied the Drosophila mushroom body neural progenitors (neuroblasts). Each of these four neuroblasts divides ~250 times to sequentially produce only three main neuronal types over the course of ~9 days of development: g, followed by α'β', and finally αβ neurons. The intrinsic temporal clock is composed of two RNA-binding proteins, IGF-II mRNA binding protein (Imp) and Syncrip (Syp), that are expressed in opposing temporal gradients. Activin signaling affects the production of α'β' neurons but whether and how this extrinsic cue interacts with the intrinsic temporal program was not known. We show that the Activin ligand Myoglianin produced from glia downregulates the levels of the intrinsic temporal factor Imp in mushroom body neuroblasts. In neuroblasts mutant for the Activin signaling receptor baboon, Imp levels are higher than normal during the α'β' temporal window, leading to the specific loss of the α'β' neurons. The intrinsic temporal clock still progresses but with a delay, skipping the α'β' window without affecting the total number of neurons produced: The number of g neurons likely increases, α'β' disappear, and the number of αβ neurons decreases. Our results illustrate that an extrinsic cue modifies an intrinsic temporal program to increase neuronal diversity.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files.
-
Opposite Imp/Syp temporal gradients govern birth time-dependent neuronal fatesNCBI Gene Expression Omnibus, GSE71103.
Article and author information
Author details
Funding
National Eye Institute (R01 EY017916)
- Claude Desplan
National Institute of Neurological Disorders and Stroke (R21 NS095288)
- Claude Desplan
National Institutes of Health (T32 HD007520)
- Anthony M Rossi
New York University (GSAS MacCracken Program)
- Anthony M Rossi
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Rossi & Desplan
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,243
- views
-
- 341
- downloads
-
- 28
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Evolutionary Biology
Seahorses, pipefishes, and seadragons are fishes from the family Syngnathidae that have evolved extraordinary traits including male pregnancy, elongated snouts, loss of teeth, and dermal bony armor. The developmental genetic and cellular changes that led to the evolution of these traits are largely unknown. Recent syngnathid genome assemblies revealed suggestive gene content differences and provided the opportunity for detailed genetic analyses. We created a single-cell RNA sequencing atlas of Gulf pipefish embryos to understand the developmental basis of four traits: derived head shape, toothlessness, dermal armor, and male pregnancy. We completed marker gene analyses, built genetic networks, and examined the spatial expression of select genes. We identified osteochondrogenic mesenchymal cells in the elongating face that express regulatory genes bmp4, sfrp1a, and prdm16. We found no evidence for tooth primordia cells, and we observed re-deployment of osteoblast genetic networks in developing dermal armor. Finally, we found that epidermal cells expressed nutrient processing and environmental sensing genes, potentially relevant for the brooding environment. The examined pipefish evolutionary innovations are composed of recognizable cell types, suggesting that derived features originate from changes within existing gene networks. Future work addressing syngnathid gene networks across multiple stages and species is essential for understanding how the novelties of these fish evolved.
-
- Developmental Biology
- Neuroscience
We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of ×2 and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a transverse spatial resolution of approximately 1.1 µm across an FOV of approximately 1.5×1.0 cm2. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hr, visualizing the movement of over 4.0×105 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine.