1. Chromosomes and Gene Expression
  2. Genetics and Genomics
Download icon

S-phase-independent silencing establishment in Saccharomyces cerevisiae

  1. Davis Goodnight
  2. Jasper Rine  Is a corresponding author
  1. University of California, Berkeley, United States
Research Article
  • Cited 2
  • Views 883
  • Annotations
Cite this article as: eLife 2020;9:e58910 doi: 10.7554/eLife.58910

Abstract

The establishment of silent chromatin, a heterochromatin-like structure at HML and HMR in Saccharomyces cerevisiae, depends on progression through S phase of the cell cycle, but the molecular nature of this requirement has remained elusive despite intensive study. Using high-resolution chromatin immunoprecipitation and single-molecule RNA analysis, we found that silencing establishment proceeded via gradual repression of transcription in individual cells over several cell cycles, and that the cell-cycle-regulated step was downstream of Sir protein recruitment. In contrast to prior results, HML and HMR had identical cell-cycle requirements for silencing establishment, with no apparent contribution from a tRNA gene adjacent to HMR. We identified the cause of the S-phase requirement for silencing establishment: removal of transcription-favoring histone modifications deposited by Dot1, Sas2, and Rtt109. These results revealed that silencing establishment was absolutely dependent on the cell-cycle-regulated interplay between euchromatic and heterochromatic histone modifications.

Article and author information

Author details

  1. Davis Goodnight

    Molecular & Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5423-1424
  2. Jasper Rine

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jrine@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2297-9814

Funding

National Institutes of Health (R01 GM31105)

  • Jasper Rine

National Institutes of Health (R01 GM120374)

  • Jasper Rine

National Institutes of Health (T32 GM007127)

  • Davis Goodnight

National Institutes of Health (T32 HG000047)

  • Davis Goodnight

National Science Foundation (Graduate Research Fellowship,1752814)

  • Davis Goodnight

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tim Formosa, University of Utah School of Medicine, United States

Publication history

  1. Received: May 14, 2020
  2. Accepted: July 18, 2020
  3. Accepted Manuscript published: July 20, 2020 (version 1)
  4. Version of Record published: August 3, 2020 (version 2)

Copyright

© 2020, Goodnight & Rine

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 883
    Page views
  • 151
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    Nina Kirstein et al.
    Research Article

    Eukaryotic DNA replication initiates during S phase from origins that have been licensed in the preceding G1 phase. Here, we compare ChIP-seq profiles of the licensing factors Orc2, Orc3, Mcm3, and Mcm7 with gene expression, replication timing and fork directionality profiles obtained by RNA-seq, Repli-seq and OK-seq. ORC and MCM are significantly and homogeneously depleted from transcribed genes, enriched at gene promoters, and more abundant in early- than in late-replicating domains. Surprisingly, after controlling these variables, no difference in ORC/MCM density is detected between initiation zones, termination zones, unidirectionally replicating and randomly replicating regions. Therefore, ORC/MCM density correlates with replication timing but does not solely regulate the probability of replication initiation. Interestingly, H4K20me3, a histone modification proposed to facilitate late origin licensing, was enriched in late replicating initiation zones and gene deserts of stochastic replication fork direction. We discuss potential mechanisms specifying when and where replication initiates in human cells.

    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Anna Nagy-Staron et al.
    Research Article

    Gene expression levels are influenced by multiple coexisting molecular mechanisms. Some of these interactions, such as those of transcription factors and promoters have been studied extensively. However, predicting phenotypes of gene regulatory networks remains a major challenge. Here, we use a well-defined synthetic gene regulatory network to study in Escherichia coli how network phenotypes depend on local genetic context, i.e. the genetic neighborhood of a transcription factor and its relative position. We show that one gene regulatory network with fixed topology can display not only quantitatively but also qualitatively different phenotypes, depending solely on the local genetic context of its components. Transcriptional read-through is the main molecular mechanism that places one transcriptional unit within two separate regulons without the need for complex regulatory sequences. We propose that relative order of individual transcriptional units, with its potential for combinatorial complexity, plays an important role in shaping phenotypes of gene regulatory networks.