Genetic and environmental determinants of variation in the plasma lipidome of older Australian twins

  1. Matthew WK Wong
  2. Anbupalam Thalamuthu
  3. Nady Braidy
  4. Karen A Mather
  5. Yue Liu
  6. Liliana Ciobanu
  7. Bernhardt T Baune
  8. Nicola J Armstrong
  9. John Kwok
  10. Peter Schofield
  11. Margaret J Wright
  12. David Ames
  13. Russell Pickford
  14. Teresa Lee
  15. Anne Poljak
  16. Perminder S Sachdev  Is a corresponding author
  1. Centre for Healthy Brain Ageing, University of New South Wales, Australia
  2. The University of Adelaide, Adelaide Medical School, Discipline of Psychiatry, Australia
  3. Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Australia
  4. Mathematics and Statistics, Murdoch University, Australia
  5. Brain and Mind Centre, The University of Sydney, Australia
  6. Neuroscience Research Australia, Australia
  7. Queensland Brain Institute, University of Queensland, Australia
  8. University of Melbourne Academic Unit for Psychiatry of Old Age, St George's Hospital, Australia
  9. University of New South Wales, Australia

Abstract

The critical role of blood lipids in a broad range of health and disease states is well recognised but less explored is the interplay of genetics and environment within the broader blood lipidome. We examined heritability of the plasma lipidome among healthy older-aged twins (75 monozygotic/55 dizygotic pairs) enrolled in the Older Australian Twins Study (OATS) and explored corresponding gene expression and DNA methylation associations. 27/209 lipids (13.3%) detected by liquid chromatography-coupled mass spectrometry (LC-MS) were significantly heritable under the classical ACE twin model (h2=0.28-0.59), which included ceramides (Cer) and triglycerides (TG). Relative to non-significantly heritable TGs, heritable TGs had a greater number of associations with gene transcripts, not directly associated with lipid metabolism, but with immune function, signalling and transcriptional regulation. Genome-wide average DNA methylation (GWAM) levels accounted for variability in some non-heritable lipids. We reveal a complex interplay of genetic and environmental influences on the ageing plasma lipidome.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

The following previously published data sets were used

Article and author information

Author details

  1. Matthew WK Wong

    School of Psychiatry, Faculty of Medicine, Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Anbupalam Thalamuthu

    School of Psychiatry, Faculty of Medicine, Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Nady Braidy

    School of Psychiatry, Faculty of Medicine, Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Karen A Mather

    School of Psychiatry, Faculty of Medicine, Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  5. Yue Liu

    School of Psychiatry, Faculty of Medicine, Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Liliana Ciobanu

    Adelaide Medical School, The University of Adelaide, Adelaide Medical School, Discipline of Psychiatry, Adelaide, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Bernhardt T Baune

    Department of Psychiatry, Department of Psychiatry, Melbourne Medical School, The University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Nicola J Armstrong

    Mathematics and Statistics, Mathematics and Statistics, Murdoch University, Perth, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4477-293X
  9. John Kwok

    Brain and Mind Centre, Brain and Mind Centre, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Peter Schofield

    Faculty of Medicine, Neuroscience Research Australia, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Margaret J Wright

    Queensland Brain Institute, Queensland Brain Institute, University of Queensland, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7133-4970
  12. David Ames

    Academic Unit for Psychiatry of Old Age, University of Melbourne Academic Unit for Psychiatry of Old Age, St George's Hospital, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. Russell Pickford

    Bioanalytical Mass Spectrometry Facility, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  14. Teresa Lee

    School of Psychiatry, Faculty of Medicine, Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  15. Anne Poljak

    School of Psychiatry, Faculty of Medicine, Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  16. Perminder S Sachdev

    School of Psychiatry, Faculty of Medicine, Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Australia
    For correspondence
    p.sachdev@unsw.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9595-3220

Funding

National Health and Medical Research Council

  • Nady Braidy
  • Perminder S Sachdev

Australian Research Council

  • Nady Braidy

Rebecca L. Cooper Medical Research Foundation

  • Nady Braidy
  • Anne Poljak
  • Perminder S Sachdev

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Mone Zaidi, Icahn School of Medicine at Mount Sinai, United States

Ethics

Human subjects: OATS was approved by the Ethics Committees of the University of New South Wales and the South Eastern Sydney Local Health District (ethics approval HC17414). All work involving human participants was performed in accordance with the principles of the Declaration of Helsinki of the World Medical Association. Informed consent was obtained from all participants and/or guardians.

Version history

  1. Received: May 18, 2020
  2. Accepted: July 20, 2020
  3. Accepted Manuscript published: July 22, 2020 (version 1)
  4. Version of Record published: July 31, 2020 (version 2)

Copyright

© 2020, Wong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 994
    Page views
  • 106
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Matthew WK Wong
  2. Anbupalam Thalamuthu
  3. Nady Braidy
  4. Karen A Mather
  5. Yue Liu
  6. Liliana Ciobanu
  7. Bernhardt T Baune
  8. Nicola J Armstrong
  9. John Kwok
  10. Peter Schofield
  11. Margaret J Wright
  12. David Ames
  13. Russell Pickford
  14. Teresa Lee
  15. Anne Poljak
  16. Perminder S Sachdev
(2020)
Genetic and environmental determinants of variation in the plasma lipidome of older Australian twins
eLife 9:e58954.
https://doi.org/10.7554/eLife.58954

Share this article

https://doi.org/10.7554/eLife.58954

Further reading

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Maria L Adelus, Jiacheng Ding ... Casey E Romanoski
    Research Article

    Heterogeneity in endothelial cell (EC) sub-phenotypes is becoming increasingly appreciated in atherosclerosis progression. Still, studies quantifying EC heterogeneity across whole transcriptomes and epigenomes in both in vitro and in vivo models are lacking. Multiomic profiling concurrently measuring transcriptomes and accessible chromatin in the same single cells was performed on six distinct primary cultures of human aortic ECs (HAECs) exposed to activating environments characteristic of the atherosclerotic microenvironment in vitro. Meta-analysis of single-cell transcriptomes across 17 human ex vivo arterial specimens was performed and two computational approaches quantitatively evaluated the similarity in molecular profiles between heterogeneous in vitro and ex vivo cell profiles. HAEC cultures were reproducibly populated by four major clusters with distinct pathway enrichment profiles and modest heterogeneous responses: EC1-angiogenic, EC2-proliferative, EC3-activated/mesenchymal-like, and EC4-mesenchymal. Quantitative comparisons between in vitro and ex vivo transcriptomes confirmed EC1 and EC2 as most canonically EC-like, and EC4 as most mesenchymal with minimal effects elicited by siERG and IL1B. Lastly, accessible chromatin regions unique to EC2 and EC4 were most enriched for coronary artery disease (CAD)-associated single-nucleotide polymorphisms from Genome Wide Association Studies (GWAS), suggesting that these cell phenotypes harbor CAD-modulating mechanisms. Primary EC cultures contain markedly heterogeneous cell subtypes defined by their molecular profiles. Surprisingly, the perturbations used here only modestly shifted cells between subpopulations, suggesting relatively stable molecular phenotypes in culture. Identifying consistently heterogeneous EC subpopulations between in vitro and ex vivo models should pave the way for improving in vitro systems while enabling the mechanisms governing heterogeneous cell state decisions.