1. Ecology
  2. Evolutionary Biology
Download icon

Does diversity beget diversity in microbiomes?

  1. Naïma Jesse Madi
  2. Michiel Vos
  3. Carmen Lia Murall
  4. Pierre Legendre
  5. B. Jesse Shapiro  Is a corresponding author
  1. University of Montreal, Canada
  2. University of Exeter, United Kingdom
  3. McGill University, Canada
Research Article
  • Cited 0
  • Views 1,591
  • Annotations
Cite this article as: eLife 2020;9:e58999 doi: 10.7554/eLife.58999

Abstract

Microbes are embedded in complex communities where they engage in a wide array of intra- and inter-specific interactions. The extent to which these interactions drive or impede microbiome diversity is not well understood. Historically, two contrasting hypotheses have been suggested to explain how species interactions could influence diversity. 'Ecological Controls' (EC) predicts a negative relationship, where the evolution or migration of novel types is constrained as niches become filled. In contrast, 'Diversity Begets Diversity' (DBD) predicts a positive relationship, with existing diversity promoting the accumulation of further diversity via niche construction and other interactions. Using high-throughput amplicon sequencing data from the Earth Microbiome Project, we provide evidence that DBD is strongest in low-diversity biomes, but weaker in more diverse biomes, consistent with biotic interactions initially favoring the accumulation of diversity (as predicted by DBD). However, as niches become increasingly filled, diversity hits a plateau (as predicted by EC).

Article and author information

Author details

  1. Naïma Jesse Madi

    Sciences Biologiques, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Michiel Vos

    European Centre for Environment and Human Health, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Carmen Lia Murall

    Sciences Biologiques, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1543-4501
  4. Pierre Legendre

    Sciences Biologiques, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. B. Jesse Shapiro

    Microbiology and Immunology, McGill University, Montreal, Canada
    For correspondence
    jesse.shapiro@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6819-8699

Funding

Natural Sciences and Engineering Research Council of Canada

  • B. Jesse Shapiro

Canada Research Chairs

  • B. Jesse Shapiro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Detlef Weigel, Max Planck Institute for Developmental Biology, Germany

Publication history

  1. Received: May 18, 2020
  2. Accepted: November 19, 2020
  3. Accepted Manuscript published: November 20, 2020 (version 1)
  4. Version of Record published: December 22, 2020 (version 2)
  5. Version of Record updated: December 24, 2020 (version 3)

Copyright

© 2020, Madi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,591
    Page views
  • 254
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    Marisa Vedor et al.
    Research Article

    Climate-driven expansions of ocean hypoxic zones are predicted to concentrate pelagic fish in oxygenated surface layers, but how expanding hypoxia and fisheries will interact to affect threatened pelagic sharks remains unknown. Here, analysis of satellite-tracked blue sharks and environmental modelling in the eastern tropical Atlantic oxygen minimum zone (OMZ) shows shark maximum dive depths decreased due to combined effects of decreasing dissolved oxygen (DO) at depth, high sea surface temperatures, and increased surface-layer net primary production. Multiple factors associated with climate-driven deoxygenation contributed to blue shark vertical habitat compression, potentially increasing their vulnerability to surface fisheries. Greater intensity of longline fishing effort occurred above the OMZ compared to adjacent waters. Higher shark catches were associated with strong DO gradients, suggesting potential aggregation along suitable DO gradients contributed to habitat compression and higher fishing-induced mortality. Fisheries controls to counteract deoxygenation effects on shark catches will be needed as oceans continue warming.

    1. Ecology
    Ke Yang et al.
    Research Article Updated

    Feeding and oviposition deterrents help phytophagous insects to identify host plants. The taste organs of phytophagous insects contain bitter gustatory receptors (GRs). To explore their function, the GRs in Plutella xylostella were analyzed. Through RNA sequencing and qPCR, we detected abundant PxylGr34 transcripts in the larval head and adult antennae. Functional analyses using the Xenopus oocyte expression system and 24 diverse phytochemicals showed that PxylGr34 is tuned to the canonical plant hormones brassinolide (BL) and 24-epibrassinolide (EBL). Electrophysiological analyses revealed that the medial sensilla styloconica of 4th instar larvae are responsive to BL and EBL. Dual-choice bioassays demonstrated that BL inhibits larval feeding and female oviposition. Knock-down of PxylGr34 by RNAi attenuates the taste responses to BL, and abolishes BL-induced feeding inhibition. These results increase our understanding of how herbivorous insects detect compounds that deter feeding and oviposition, and may be useful for designing plant hormone-based pest management strategies.