1. Ecology
  2. Evolutionary Biology
Download icon

Does diversity beget diversity in microbiomes?

  1. Naïma Jesse Madi
  2. Michiel Vos
  3. Carmen Lia Murall
  4. Pierre Legendre
  5. B. Jesse Shapiro  Is a corresponding author
  1. University of Montreal, Canada
  2. University of Exeter, United Kingdom
  3. McGill University, Canada
Research Article
  • Cited 8
  • Views 2,870
  • Annotations
Cite this article as: eLife 2020;9:e58999 doi: 10.7554/eLife.58999

Abstract

Microbes are embedded in complex communities where they engage in a wide array of intra- and inter-specific interactions. The extent to which these interactions drive or impede microbiome diversity is not well understood. Historically, two contrasting hypotheses have been suggested to explain how species interactions could influence diversity. 'Ecological Controls' (EC) predicts a negative relationship, where the evolution or migration of novel types is constrained as niches become filled. In contrast, 'Diversity Begets Diversity' (DBD) predicts a positive relationship, with existing diversity promoting the accumulation of further diversity via niche construction and other interactions. Using high-throughput amplicon sequencing data from the Earth Microbiome Project, we provide evidence that DBD is strongest in low-diversity biomes, but weaker in more diverse biomes, consistent with biotic interactions initially favoring the accumulation of diversity (as predicted by DBD). However, as niches become increasingly filled, diversity hits a plateau (as predicted by EC).

Data availability

All data is available from the Earth Microbiome Project (ftp.microbio.me), as detailed in the Methods. All computer code used for analysis are available at https://github.com/Naima16/dbd.git.

The following previously published data sets were used
    1. Thompson LR et al
    (2017) Earth Microbiome Project
    ftp://ftp.microbio.me/emp/release1/otu_distributions/otu_summary.emp_deblur_90bp.subset_2k.rare_5000.tsv.

Article and author information

Author details

  1. Naïma Jesse Madi

    Sciences Biologiques, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Michiel Vos

    European Centre for Environment and Human Health, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Carmen Lia Murall

    Sciences Biologiques, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1543-4501
  4. Pierre Legendre

    Sciences Biologiques, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. B. Jesse Shapiro

    Microbiology and Immunology, McGill University, Montreal, Canada
    For correspondence
    jesse.shapiro@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6819-8699

Funding

Natural Sciences and Engineering Research Council of Canada

  • B. Jesse Shapiro

Canada Research Chairs

  • B. Jesse Shapiro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Detlef Weigel, Max Planck Institute for Developmental Biology, Germany

Publication history

  1. Received: May 18, 2020
  2. Accepted: November 19, 2020
  3. Accepted Manuscript published: November 20, 2020 (version 1)
  4. Version of Record published: December 22, 2020 (version 2)
  5. Version of Record updated: December 24, 2020 (version 3)

Copyright

© 2020, Madi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,870
    Page views
  • 390
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    2. Plant Biology
    Emanuela Cristiani et al.
    Research Article

    Forager focus on wild cereal plants has been documented in the core zone of domestication in southwestern Asia, while evidence for forager use of wild grass grains remains sporadic elsewhere. In this paper, we present starch grain and phytolith analyses of dental calculus from 60 Mesolithic and Early Neolithic individuals from five sites in the Danube Gorges of the central Balkans. This zone was inhabited by likely complex Holocene foragers for several millennia before the appearance of the first farmers ~6200 cal BC. We also analyzed forager ground stone tools for evidence of plant processing. Our results based on the study of dental calculus show that certain species of Poaceae (species of the genus Aegilops) were used since the Early Mesolithic, while ground stone tools exhibit traces of a developed grass grain processing technology. The adoption of domesticated plants in this region after ~6500 cal BC might have been eased by the existing familiarity with wild cereals.

    1. Cell Biology
    2. Ecology
    Basile Jacquel et al.
    Tools and Resources Updated

    The life cycle of microorganisms is associated with dynamic metabolic transitions and complex cellular responses. In yeast, how metabolic signals control the progressive choreography of structural reorganizations observed in quiescent cells during a natural life cycle remains unclear. We have developed an integrated microfluidic device to address this question, enabling continuous single-cell tracking in a batch culture experiencing unperturbed nutrient exhaustion to unravel the coordination between metabolic and structural transitions within cells. Our technique reveals an abrupt fate divergence in the population, whereby a fraction of cells is unable to transition to respiratory metabolism and undergoes a reversible entry into a quiescence-like state leading to premature cell death. Further observations reveal that nonmonotonous internal pH fluctuations in respiration-competent cells orchestrate the successive waves of protein superassemblies formation that accompany the entry into a bona fide quiescent state. This ultimately leads to an abrupt cytosolic glass transition that occurs stochastically long after proliferation cessation. This new experimental framework provides a unique way to track single-cell fate dynamics over a long timescale in a population of cells that continuously modify their ecological niche.