1. Ecology
  2. Evolutionary Biology
Download icon

Does diversity beget diversity in microbiomes?

  1. Naïma Jesse Madi
  2. Michiel Vos
  3. Carmen Lia Murall
  4. Pierre Legendre
  5. B. Jesse Shapiro  Is a corresponding author
  1. University of Montreal, Canada
  2. University of Exeter, United Kingdom
  3. McGill University, Canada
Research Article
  • Cited 0
  • Views 886
  • Annotations
Cite this article as: eLife 2020;9:e58999 doi: 10.7554/eLife.58999

Abstract

Microbes are embedded in complex communities where they engage in a wide array of intra- and inter-specific interactions. The extent to which these interactions drive or impede microbiome diversity is not well understood. Historically, two contrasting hypotheses have been suggested to explain how species interactions could influence diversity. 'Ecological Controls' (EC) predicts a negative relationship, where the evolution or migration of novel types is constrained as niches become filled. In contrast, 'Diversity Begets Diversity' (DBD) predicts a positive relationship, with existing diversity promoting the accumulation of further diversity via niche construction and other interactions. Using high-throughput amplicon sequencing data from the Earth Microbiome Project, we provide evidence that DBD is strongest in low-diversity biomes, but weaker in more diverse biomes, consistent with biotic interactions initially favoring the accumulation of diversity (as predicted by DBD). However, as niches become increasingly filled, diversity hits a plateau (as predicted by EC).

Article and author information

Author details

  1. Naïma Jesse Madi

    Sciences Biologiques, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  2. Michiel Vos

    European Centre for Environment and Human Health, University of Exeter, Exeter, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Carmen Lia Murall

    Sciences Biologiques, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1543-4501
  4. Pierre Legendre

    Sciences Biologiques, University of Montreal, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. B. Jesse Shapiro

    Microbiology and Immunology, McGill University, Montreal, Canada
    For correspondence
    jesse.shapiro@mcgill.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6819-8699

Funding

Natural Sciences and Engineering Research Council of Canada

  • B. Jesse Shapiro

Canada Research Chairs

  • B. Jesse Shapiro

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Detlef Weigel, Max Planck Institute for Developmental Biology, Germany

Publication history

  1. Received: May 18, 2020
  2. Accepted: November 19, 2020
  3. Accepted Manuscript published: November 20, 2020 (version 1)

Copyright

© 2020, Madi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 886
    Page views
  • 128
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Ecology
    2. Microbiology and Infectious Disease
    Julie Teresa Shapiro et al.
    Research Article Updated

    Antimicrobial resistance (AMR) is a global threat. A better understanding of how antibiotic use and between-ward patient transfers (or connectivity) impact population-level AMR in hospital networks can help optimize antibiotic stewardship and infection control strategies. Here, we used a metapopulation framework to explain variations in the incidence of infections caused by seven major bacterial species and their drug-resistant variants in a network of 357 hospital wards. We found that ward-level antibiotic consumption volume had a stronger influence on the incidence of the more resistant pathogens, while connectivity had the most influence on hospital-endemic species and carbapenem-resistant pathogens. Piperacillin-tazobactam consumption was the strongest predictor of the cumulative incidence of infections resistant to empirical sepsis therapy. Our data provide evidence that both antibiotic use and connectivity measurably influence hospital AMR. Finally, we provide a ranking of key antibiotics by their estimated population-level impact on AMR that might help inform antimicrobial stewardship strategies.

    1. Ecology
    2. Microbiology and Infectious Disease
    Tjibbe Donker
    Insight

    Moving patients between wards and prescribing high levels of antibiotics increases the spread of bacterial infections that are resistant to treatment in hospitals.