Intracellular complexities of acquiring a new enzymatic function revealed by mass-randomisation of active site residues

  1. Kelsi R Hall
  2. Katherine J Robins
  3. Elsie M Williams
  4. Michelle H Rich
  5. Mark J Calcott
  6. Janine N Copp
  7. Rory F Little
  8. Ralf Schwörer
  9. Gary B Evans
  10. Wayne M Patrick
  11. David F Ackerley  Is a corresponding author
  1. Victoria University of Wellington, New Zealand
  2. University of British Columbia, Canada

Abstract

Selection for a promiscuous enzyme activity provides substantial opportunity for competition between endogenous and newly-encountered substrates to influence the evolutionary trajectory, an aspect that is often overlooked in laboratory directed evolution studies. We selected the Escherichia coli nitro/quinone reductase NfsA for chloramphenicol detoxification by simultaneously randomising eight active site residues and interrogating ~250,000,000 reconfigured variants. Analysis of every possible intermediate of the two best chloramphenicol reductases revealed complex epistatic interactions. In both cases, improved chloramphenicol detoxification was only observed after an R225 substitution that largely eliminated activity with endogenous quinones. Error-prone PCR mutagenesis reinforced the importance of R225 substitutions, found in 100% of selected variants. This strong activity trade-off demonstrates that endogenous cellular metabolites hold considerable potential to shape evolutionary outcomes. Unselected prodrug-converting activities were mostly unaffected, emphasising the importance of negative selection to effect enzyme specialisation, and offering an application for the evolved genes as dual-purpose selectable/counter-selectable markers.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kelsi R Hall

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  2. Katherine J Robins

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5049-4246
  3. Elsie M Williams

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  4. Michelle H Rich

    Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4876-4029
  5. Mark J Calcott

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  6. Janine N Copp

    Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6690-0480
  7. Rory F Little

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  8. Ralf Schwörer

    Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9352-6559
  9. Gary B Evans

    Ferrier Institute, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  10. Wayne M Patrick

    Ferrier Institute, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  11. David F Ackerley

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    For correspondence
    david.ackerley@vuw.ac.nz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6188-9902

Funding

Royal Society of New Zealand (15-VUW-037)

  • Wayne M Patrick
  • David F Ackerley

Cancer Society of New Zealand (18.05)

  • Mark J Calcott
  • David F Ackerley

Royal Society of New Zealand (19-VUW-076)

  • Wayne M Patrick
  • David F Ackerley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrei N Lupas, Max Planck Institute for Developmental Biology, Germany

Publication history

  1. Received: May 19, 2020
  2. Accepted: November 12, 2020
  3. Accepted Manuscript published: November 13, 2020 (version 1)
  4. Version of Record published: December 15, 2020 (version 2)

Copyright

© 2020, Hall et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 812
    Page views
  • 105
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kelsi R Hall
  2. Katherine J Robins
  3. Elsie M Williams
  4. Michelle H Rich
  5. Mark J Calcott
  6. Janine N Copp
  7. Rory F Little
  8. Ralf Schwörer
  9. Gary B Evans
  10. Wayne M Patrick
  11. David F Ackerley
(2020)
Intracellular complexities of acquiring a new enzymatic function revealed by mass-randomisation of active site residues
eLife 9:e59081.
https://doi.org/10.7554/eLife.59081

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Laura M Doherty et al.
    Research Article

    Deubiquitinating enzymes (DUBs), ~100 of which are found in human cells, are proteases that remove ubiquitin conjugates from proteins, thereby regulating protein turnover. They are involved in a wide range of cellular activities and are emerging therapeutic targets for cancer and other diseases. Drugs targeting USP1 and USP30 are in clinical development for cancer and kidney disease respectively. However, the majority of substrates and pathways regulated by DUBs remain unknown, impeding efforts to prioritize specific enzymes for research and drug development. To assemble a knowledgebase of DUB activities, co-dependent genes, and substrates, we combined targeted experiments using CRISPR libraries and inhibitors with systematic mining of functional genomic databases. Analysis of the Dependency Map, Connectivity Map, Cancer Cell Line Encyclopedia, and multiple protein-protein interaction databases yielded specific hypotheses about DUB function, a subset of which were confirmed in follow-on experiments. The data in this paper are browsable online in a newly developed DUB Portal and promise to improve understanding of DUBs as a family as well as the activities of incompletely characterized DUBs (e.g. USPL1 and USP32) and those already targeted with investigational cancer therapeutics (e.g. USP14, UCHL5, and USP7).

    1. Biochemistry and Chemical Biology
    Erich J Goebel et al.
    Research Article

    Activin ligands are formed from two disulfide-linked inhibin β (Inhβ) subunit chains. They exist as homodimeric proteins, as in the case of activin A (ActA; InhβA/InhβA) or activin C (ActC; InhβC/InhβC), or as heterodimers, as with activin AC (ActAC; InhβA:InhβC). While the biological functions of ActA and activin B (ActB) have been well characterized, little is known about the biological functions of ActC or ActAC. One thought is that the InhβC chain functions to interfere with ActA production by forming less active ActAC heterodimers. Here, we assessed and characterized the signaling capacity of ligands containing the InhβC chain. ActC and ActAC activated SMAD2/3-dependent signaling via the type I receptor, activin receptor-like kinase 7 (ALK7). Relative to ActA and ActB, ActC exhibited lower affinity for the cognate activin type II receptors and was resistant to neutralization by the extracellular antagonist, follistatin. In mature murine adipocytes, which exhibit high ALK7 expression, ActC elicited a SMAD2/3 response similar to ActB, which can also signal via ALK7. Collectively, these results establish that ActC and ActAC are active ligands that exhibit a distinct signaling receptor and antagonist profile compared to other activins.