1. Biochemistry and Chemical Biology
  2. Evolutionary Biology
Download icon

Intracellular complexities of acquiring a new enzymatic function revealed by mass-randomisation of active site residues

  1. Kelsi R Hall
  2. Katherine J Robins
  3. Elsie M Williams
  4. Michelle H Rich
  5. Mark J Calcott
  6. Janine N Copp
  7. Rory F Little
  8. Ralf Schwörer
  9. Gary B Evans
  10. Wayne M Patrick
  11. David F Ackerley  Is a corresponding author
  1. Victoria University of Wellington, New Zealand
  2. University of British Columbia, Canada
Research Article
  • Cited 0
  • Views 684
  • Annotations
Cite this article as: eLife 2020;9:e59081 doi: 10.7554/eLife.59081

Abstract

Selection for a promiscuous enzyme activity provides substantial opportunity for competition between endogenous and newly-encountered substrates to influence the evolutionary trajectory, an aspect that is often overlooked in laboratory directed evolution studies. We selected the Escherichia coli nitro/quinone reductase NfsA for chloramphenicol detoxification by simultaneously randomising eight active site residues and interrogating ~250,000,000 reconfigured variants. Analysis of every possible intermediate of the two best chloramphenicol reductases revealed complex epistatic interactions. In both cases, improved chloramphenicol detoxification was only observed after an R225 substitution that largely eliminated activity with endogenous quinones. Error-prone PCR mutagenesis reinforced the importance of R225 substitutions, found in 100% of selected variants. This strong activity trade-off demonstrates that endogenous cellular metabolites hold considerable potential to shape evolutionary outcomes. Unselected prodrug-converting activities were mostly unaffected, emphasising the importance of negative selection to effect enzyme specialisation, and offering an application for the evolved genes as dual-purpose selectable/counter-selectable markers.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kelsi R Hall

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  2. Katherine J Robins

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5049-4246
  3. Elsie M Williams

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  4. Michelle H Rich

    Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4876-4029
  5. Mark J Calcott

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  6. Janine N Copp

    Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6690-0480
  7. Rory F Little

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  8. Ralf Schwörer

    Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9352-6559
  9. Gary B Evans

    Ferrier Institute, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  10. Wayne M Patrick

    Ferrier Institute, Victoria University of Wellington, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  11. David F Ackerley

    School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
    For correspondence
    david.ackerley@vuw.ac.nz
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6188-9902

Funding

Royal Society of New Zealand (15-VUW-037)

  • Wayne M Patrick
  • David F Ackerley

Cancer Society of New Zealand (18.05)

  • Mark J Calcott
  • David F Ackerley

Royal Society of New Zealand (19-VUW-076)

  • Wayne M Patrick
  • David F Ackerley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrei N Lupas, Max Planck Institute for Developmental Biology, Germany

Publication history

  1. Received: May 19, 2020
  2. Accepted: November 12, 2020
  3. Accepted Manuscript published: November 13, 2020 (version 1)
  4. Version of Record published: December 15, 2020 (version 2)

Copyright

© 2020, Hall et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 684
    Page views
  • 96
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    Xavier Portillo et al.
    Research Article Updated

    An RNA polymerase ribozyme that has been the subject of extensive directed evolution efforts has attained the ability to synthesize complex functional RNAs, including a full-length copy of its own evolutionary ancestor. During the course of evolution, the catalytic core of the ribozyme has undergone a major structural rearrangement, resulting in a novel tertiary structural element that lies in close proximity to the active site. Through a combination of site-directed mutagenesis, structural probing, and deep sequencing analysis, the trajectory of evolution was seen to involve the progressive stabilization of the new structure, which provides the basis for improved catalytic activity of the ribozyme. Multiple paths to the new structure were explored by the evolving population, converging upon a common solution. Tertiary structural remodeling of RNA is known to occur in nature, as evidenced by the phylogenetic analysis of extant organisms, but this type of structural innovation had not previously been observed in an experimental setting. Despite prior speculation that the catalytic core of the ribozyme had become trapped in a narrow local fitness optimum, the evolving population has broken through to a new fitness locale, raising the possibility that further improvement of polymerase activity may be achievable.

    1. Biochemistry and Chemical Biology
    Gajanan S Patil et al.
    Research Article Updated

    Fatty acyl-AMP ligases (FAALs) channelize fatty acids towards biosynthesis of virulent lipids in mycobacteria and other pharmaceutically or ecologically important polyketides and lipopeptides in other microbes. They do so by bypassing the ubiquitous coenzyme A-dependent activation and rely on the acyl carrier protein-tethered 4′-phosphopantetheine (holo-ACP). The molecular basis of how FAALs strictly reject chemically identical and abundant acceptors like coenzyme A (CoA) and accept holo-ACP unlike other members of the ANL superfamily remains elusive. We show that FAALs have plugged the promiscuous canonical CoA-binding pockets and utilize highly selective alternative binding sites. These alternative pockets can distinguish adenosine 3′,5′-bisphosphate-containing CoA from holo-ACP and thus FAALs can distinguish between CoA and holo-ACP. These exclusive features helped identify the omnipresence of FAAL-like proteins and their emergence in plants, fungi, and animals with unconventional domain organizations. The universal distribution of FAALs suggests that they are parallelly evolved with FACLs for ensuring a CoA-independent activation and redirection of fatty acids towards lipidic metabolites.