The autophagy adaptor NDP52 and the FIP200 coiled-coil allosterically activate ULK1 complex membrane recruitment

  1. Xiaoshan Shi
  2. Chunmei Chang
  3. Adam L Yokom
  4. Liv E Jensen
  5. James H Hurley  Is a corresponding author
  1. University of California, Berkeley, United States

Abstract

The selective autophagy pathways of xenophagy and mitophagy are initiated when the adaptor NDP52 recruits the ULK1 complex to autophagic cargo. Hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) was used to map the membrane and NDP52 binding sites of the ULK1 complex to unique regions of the coiled coil of the FIP200 subunit. Electron microscopy of the full-length ULK1 complex shows that the FIP200 coiled coil projects away from the crescent-shaped FIP200 N-terminal domain dimer. NDP52 allosterically stimulates membrane-binding by FIP200 and the ULK1 complex by promoting a more dynamic conformation of the membrane-binding portion of the FIP200 coiled coil. Giant unilamellar vesicle (GUV) reconstitution confirmed that membrane recruitment by the ULK1 complex is triggered by NDP52 engagement. These data reveal how the allosteric linkage between NDP52 and the ULK1 complex could drive the first membrane recruitment event of phagophore biogenesis in xenophagy and mitophagy.

Data availability

All data generated in this study are included in the manuscript and supporting files. HDX-MS data are included as Supplementary Data Set 1.

Article and author information

Author details

  1. Xiaoshan Shi

    Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7931-8684
  2. Chunmei Chang

    Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Adam L Yokom

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3746-7961
  4. Liv E Jensen

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. James H Hurley

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jimhurley@berkeley.edu
    Competing interests
    James H Hurley, JHH is co-founder of Casma Therapeutics.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5054-5445

Funding

National Institute of General Medical Sciences (R01 GM111730)

  • James H Hurley

Human Frontier Sciences Program (RPGO 2017/0026)

  • James H Hurley

Jane Coffin Childs Foundation

  • Adam L Yokom

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wade Harper, Harvard Medical School, United States

Version history

  1. Received: May 19, 2020
  2. Accepted: August 9, 2020
  3. Accepted Manuscript published: August 10, 2020 (version 1)
  4. Version of Record published: August 25, 2020 (version 2)

Copyright

© 2020, Shi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,799
    views
  • 535
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaoshan Shi
  2. Chunmei Chang
  3. Adam L Yokom
  4. Liv E Jensen
  5. James H Hurley
(2020)
The autophagy adaptor NDP52 and the FIP200 coiled-coil allosterically activate ULK1 complex membrane recruitment
eLife 9:e59099.
https://doi.org/10.7554/eLife.59099

Share this article

https://doi.org/10.7554/eLife.59099

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Amy H Andreotti, Volker Dötsch
    Editorial

    The articles in this special issue highlight how modern cellular, biochemical, biophysical and computational techniques are allowing deeper and more detailed studies of allosteric kinase regulation.