Conservation of peripheral nervous system formation mechanisms in divergent ascidian embryos

  1. Joshua F Coulcher
  2. Agnès Roure
  3. Rafath Chowdhury
  4. Méryl Robert
  5. Laury Lescat
  6. Aurélie Bouin
  7. Juliana Carvajal Cadavid
  8. Hiroki Nishida
  9. Sébastien Darras  Is a corresponding author
  1. CNRS, France
  2. Albert Einstein college of medicine, United States
  3. Osaka University, Japan

Abstract

Ascidians with very similar embryos but highly divergent genomes are thought to have undergone extensive developmental system drift. We compared, in four species (Ciona and Phallusia for Phlebobranchia, Molgula and Halocynthia for Stolidobranchia), gene expression and gene regulation for a network of six transcription factors regulating peripheral nervous system (PNS) formation in Ciona. All genes, but one in Molgula, were expressed in the PNS with some differences correlating with phylogenetic distance. Cross-species transgenesis indicated strong levels of conservation, except in Molgula, in gene regulation despite lack of sequence conservation of the enhancers. Developmental system drift in ascidians is thus higher for gene regulation than for gene expression; and is impacted not only by phylogenetic distance, but also in a clade-specific manner and unevenly within a network. Finally, considering that Molgula is divergent in our analyses, this suggests deep conservation of developmental mechanisms in ascidians after 390 My of separate evolution.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Joshua F Coulcher

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Agnès Roure

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Rafath Chowdhury

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Méryl Robert

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Laury Lescat

    dept of Developmental and molecular Biology, Albert Einstein college of medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Aurélie Bouin

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Juliana Carvajal Cadavid

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Hiroki Nishida

    Department of Biological Sciences, Osaka University, Toyonaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7249-1668
  9. Sébastien Darras

    BIOM, CNRS, Banyuls-sur-mer, France
    For correspondence
    sebastien.darras@obs-banyuls.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0590-0062

Funding

Agence Nationale de la Recherche (ANR-11-JSV2-007)

  • Sébastien Darras

Agence Nationale de la Recherche (ANR-17-CE13-0027)

  • Sébastien Darras

Fondation des Treilles

  • Joshua F Coulcher

Centre National de la Recherche Scientifique (DBM2020)

  • Sébastien Darras

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Coulcher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,300
    views
  • 194
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joshua F Coulcher
  2. Agnès Roure
  3. Rafath Chowdhury
  4. Méryl Robert
  5. Laury Lescat
  6. Aurélie Bouin
  7. Juliana Carvajal Cadavid
  8. Hiroki Nishida
  9. Sébastien Darras
(2020)
Conservation of peripheral nervous system formation mechanisms in divergent ascidian embryos
eLife 9:e59157.
https://doi.org/10.7554/eLife.59157

Share this article

https://doi.org/10.7554/eLife.59157

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.