1. Developmental Biology
  2. Evolutionary Biology
Download icon

Conservation of peripheral nervous system formation mechanisms in divergent ascidian embryos

  1. Joshua F Coulcher
  2. Agnès Roure
  3. Rafath Chowdhury
  4. Méryl Robert
  5. Laury Lescat
  6. Aurélie Bouin
  7. Juliana Carvajal Cadavid
  8. Hiroki Nishida
  9. Sébastien Darras  Is a corresponding author
  1. CNRS, France
  2. Albert Einstein college of medicine, United States
  3. Osaka University, Japan
Research Article
  • Cited 1
  • Views 957
  • Annotations
Cite this article as: eLife 2020;9:e59157 doi: 10.7554/eLife.59157

Abstract

Ascidians with very similar embryos but highly divergent genomes are thought to have undergone extensive developmental system drift. We compared, in four species (Ciona and Phallusia for Phlebobranchia, Molgula and Halocynthia for Stolidobranchia), gene expression and gene regulation for a network of six transcription factors regulating peripheral nervous system (PNS) formation in Ciona. All genes, but one in Molgula, were expressed in the PNS with some differences correlating with phylogenetic distance. Cross-species transgenesis indicated strong levels of conservation, except in Molgula, in gene regulation despite lack of sequence conservation of the enhancers. Developmental system drift in ascidians is thus higher for gene regulation than for gene expression; and is impacted not only by phylogenetic distance, but also in a clade-specific manner and unevenly within a network. Finally, considering that Molgula is divergent in our analyses, this suggests deep conservation of developmental mechanisms in ascidians after 390 My of separate evolution.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Joshua F Coulcher

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Agnès Roure

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Rafath Chowdhury

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Méryl Robert

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Laury Lescat

    dept of Developmental and molecular Biology, Albert Einstein college of medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Aurélie Bouin

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Juliana Carvajal Cadavid

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Hiroki Nishida

    Department of Biological Sciences, Osaka University, Toyonaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7249-1668
  9. Sébastien Darras

    BIOM, CNRS, Banyuls-sur-mer, France
    For correspondence
    sebastien.darras@obs-banyuls.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0590-0062

Funding

Agence Nationale de la Recherche (ANR-11-JSV2-007)

  • Sébastien Darras

Agence Nationale de la Recherche (ANR-17-CE13-0027)

  • Sébastien Darras

Fondation des Treilles

  • Joshua F Coulcher

Centre National de la Recherche Scientifique (DBM2020)

  • Sébastien Darras

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Shigehiro Kuraku, RIKEN Center for Biosystems Dynamics Research, Japan

Publication history

  1. Received: May 21, 2020
  2. Accepted: November 13, 2020
  3. Accepted Manuscript published: November 16, 2020 (version 1)
  4. Version of Record published: December 2, 2020 (version 2)

Copyright

© 2020, Coulcher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 957
    Page views
  • 147
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    Ruth M Williams et al.
    Tools and Resources

    The epiblast of vertebrate embryos is comprised of neural and non-neural ectoderm, with the border territory at their intersection harboring neural crest and cranial placode progenitors. Here, we a generate single-cell atlas of the developing chick epiblast from late gastrulation through early neurulation stages to define transcriptional changes in the emerging ‘neural plate border’ as well as other regions of the epiblast. Focusing on the border territory, the results reveal gradual establishment of heterogeneous neural plate border signatures, including novel genes that we validate by fluorescent in situ hybridization. Developmental trajectory analysis infers that segregation of neural plate border lineages only commences at early neurulation, rather than at gastrulation as previously predicted. We find that cells expressing the prospective neural crest marker Pax7 contribute to multiple lineages, and a subset of premigratory neural crest cells shares a transcriptional signature with their border precursors. Together, our results suggest that cells at the neural plate border remain heterogeneous until early neurulation, at which time progenitors become progressively allocated toward defined neural crest and placode lineages. The data also can be mined to reveal changes throughout the developing epiblast.

    1. Biochemistry and Chemical Biology
    2. Developmental Biology
    Lucas C Pantaleão et al.
    Research Article Updated

    Maternal obesity during pregnancy has immediate and long-term detrimental effects on the offspring heart. In this study, we characterized the cardiac and circulatory lipid profiles in late gestation E18.5 fetuses of diet-induced obese pregnant mice and established the changes in lipid abundance and fetal cardiac transcriptomics. We used untargeted and targeted lipidomics and transcriptomics to define changes in the serum and cardiac lipid composition and fatty acid metabolism in male and female fetuses. From these analyses we observed: (1) maternal obesity affects the maternal and fetal serum lipidome distinctly; (2) female fetal heart lipidomes are more sensitive to maternal obesity than males; (3) changes in lipid supply might contribute to early expression of lipolytic genes in mouse hearts exposed to maternal obesity. These results highlight the existence of sexually dimorphic responses of the fetal heart to the same in utero obesogenic environment and identify lipids species that might mediate programming of cardiovascular health.