Conservation of peripheral nervous system formation mechanisms in divergent ascidian embryos

  1. Joshua F Coulcher
  2. Agnès Roure
  3. Rafath Chowdhury
  4. Méryl Robert
  5. Laury Lescat
  6. Aurélie Bouin
  7. Juliana Carvajal Cadavid
  8. Hiroki Nishida
  9. Sébastien Darras  Is a corresponding author
  1. CNRS, France
  2. Albert Einstein college of medicine, United States
  3. Osaka University, Japan

Abstract

Ascidians with very similar embryos but highly divergent genomes are thought to have undergone extensive developmental system drift. We compared, in four species (Ciona and Phallusia for Phlebobranchia, Molgula and Halocynthia for Stolidobranchia), gene expression and gene regulation for a network of six transcription factors regulating peripheral nervous system (PNS) formation in Ciona. All genes, but one in Molgula, were expressed in the PNS with some differences correlating with phylogenetic distance. Cross-species transgenesis indicated strong levels of conservation, except in Molgula, in gene regulation despite lack of sequence conservation of the enhancers. Developmental system drift in ascidians is thus higher for gene regulation than for gene expression; and is impacted not only by phylogenetic distance, but also in a clade-specific manner and unevenly within a network. Finally, considering that Molgula is divergent in our analyses, this suggests deep conservation of developmental mechanisms in ascidians after 390 My of separate evolution.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Joshua F Coulcher

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Agnès Roure

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Rafath Chowdhury

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Méryl Robert

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Laury Lescat

    dept of Developmental and molecular Biology, Albert Einstein college of medicine, Bronx, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Aurélie Bouin

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Juliana Carvajal Cadavid

    BIOM, CNRS, Banyuls-sur-mer, France
    Competing interests
    The authors declare that no competing interests exist.
  8. Hiroki Nishida

    Department of Biological Sciences, Osaka University, Toyonaka, Japan
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7249-1668
  9. Sébastien Darras

    BIOM, CNRS, Banyuls-sur-mer, France
    For correspondence
    sebastien.darras@obs-banyuls.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0590-0062

Funding

Agence Nationale de la Recherche (ANR-11-JSV2-007)

  • Sébastien Darras

Agence Nationale de la Recherche (ANR-17-CE13-0027)

  • Sébastien Darras

Fondation des Treilles

  • Joshua F Coulcher

Centre National de la Recherche Scientifique (DBM2020)

  • Sébastien Darras

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Shigehiro Kuraku, RIKEN Center for Biosystems Dynamics Research, Japan

Version history

  1. Received: May 21, 2020
  2. Accepted: November 13, 2020
  3. Accepted Manuscript published: November 16, 2020 (version 1)
  4. Version of Record published: December 2, 2020 (version 2)

Copyright

© 2020, Coulcher et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,209
    Page views
  • 186
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Joshua F Coulcher
  2. Agnès Roure
  3. Rafath Chowdhury
  4. Méryl Robert
  5. Laury Lescat
  6. Aurélie Bouin
  7. Juliana Carvajal Cadavid
  8. Hiroki Nishida
  9. Sébastien Darras
(2020)
Conservation of peripheral nervous system formation mechanisms in divergent ascidian embryos
eLife 9:e59157.
https://doi.org/10.7554/eLife.59157

Share this article

https://doi.org/10.7554/eLife.59157

Further reading

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.

    1. Developmental Biology
    2. Neuroscience
    Smrithi Prem, Bharati Dev ... Emanuel DiCicco-Bloom
    Research Article Updated

    Autism spectrum disorder (ASD) is defined by common behavioral characteristics, raising the possibility of shared pathogenic mechanisms. Yet, vast clinical and etiological heterogeneity suggests personalized phenotypes. Surprisingly, our iPSC studies find that six individuals from two distinct ASD subtypes, idiopathic and 16p11.2 deletion, have common reductions in neural precursor cell (NPC) neurite outgrowth and migration even though whole genome sequencing demonstrates no genetic overlap between the datasets. To identify signaling differences that may contribute to these developmental defects, an unbiased phospho-(p)-proteome screen was performed. Surprisingly despite the genetic heterogeneity, hundreds of shared p-peptides were identified between autism subtypes including the mTOR pathway. mTOR signaling alterations were confirmed in all NPCs across both ASD subtypes, and mTOR modulation rescued ASD phenotypes and reproduced autism NPC-associated phenotypes in control NPCs. Thus, our studies demonstrate that genetically distinct ASD subtypes have common defects in neurite outgrowth and migration which are driven by the shared pathogenic mechanism of mTOR signaling dysregulation.