1. Cell Biology
Download icon

Orderly assembly underpinning built-in asymmetry in the yeast centrosome duplication cycle requires cyclin-dependent kinase

  1. Marco Geymonat
  2. Qiuran Peng
  3. Zhiang Guo
  4. Zulin Yu
  5. Jay R Unruh
  6. Sue L Jaspersen  Is a corresponding author
  7. Marisa Segal  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Stowers Institute for Medical Research, United States
Research Article
  • Cited 1
  • Views 798
  • Annotations
Cite this article as: eLife 2020;9:e59222 doi: 10.7554/eLife.59222

Abstract

Asymmetric astral microtubule organization drives the polarized orientation of the S. cerevisiae mitotic spindle and primes the invariant inheritance of the old spindle pole body (SPB, the yeast centrosome) by the bud. This model has anticipated analogous centrosome asymmetries featured in self-renewing stem cell divisions. We previously implicated Spc72, the cytoplasmic receptor for the gamma-tubulin nucleation complex, as the most upstream determinant linking SPB age, functional asymmetry and fate. Here we used structured illumination microscopy and biochemical analysis to explore the asymmetric landscape of nucleation sites inherently built into the spindle pathway and under the control of cyclin-dependent kinase (CDK). We show that CDK enforces Spc72 asymmetric docking by phosphorylating Nud1/centriolin. Furthermore, CDK-imposed order in the construction of the new SPB promotes the correct balance of nucleation sites between the nuclear and cytoplasmic faces of the SPB. Together these contributions by CDK inherently link correct SPB morphogenesis, age and fate.

Article and author information

Author details

  1. Marco Geymonat

    Department of Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8792-0517
  2. Qiuran Peng

    Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4761-0944
  3. Zhiang Guo

    Genetics, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Zulin Yu

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jay R Unruh

    Stowers Institute for Medical Research, Kansas City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Sue L Jaspersen

    Stowers Institute for Medical Research, Kansas City, United States
    For correspondence
    slj@stowers.org
    Competing interests
    The authors declare that no competing interests exist.
  7. Marisa Segal

    Genetics, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    ms433@hermes.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1848-9388

Funding

NIH -NIGMS (RO1GM121443)

  • Sue L Jaspersen

CSC Cambridge International Scholarship

  • Qiuran Peng
  • Marisa Segal

CSC Cambridge International Scholarship

  • Zhiang Guo
  • Marisa Segal

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jens Lüders, Institute for Research in Biomedicine, Spain

Publication history

  1. Received: May 22, 2020
  2. Accepted: August 21, 2020
  3. Accepted Manuscript published: August 27, 2020 (version 1)
  4. Version of Record published: September 3, 2020 (version 2)

Copyright

© 2020, Geymonat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 798
    Page views
  • 127
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Medicine
    LouJin Song et al.
    Research Article Updated

    The lymphatic vasculature is involved in the pathogenesis of acute cardiac injuries, but little is known about its role in chronic cardiac dysfunction. Here, we demonstrate that angiotensin II infusion induced cardiac inflammation and fibrosis at 1 week and caused cardiac dysfunction and impaired lymphatic transport at 6 weeks in mice, while co-administration of VEGFCc156s improved these parameters. To identify novel mechanisms underlying this protection, RNA sequencing analysis in distinct cell populations revealed that VEGFCc156s specifically modulated angiotensin II-induced inflammatory responses in cardiac and peripheral lymphatic endothelial cells. Furthermore, telemetry studies showed that while angiotensin II increased blood pressure acutely in all animals, VEGFCc156s-treated animals displayed a delayed systemic reduction in blood pressure independent of alterations in angiotensin II-mediated aortic stiffness. Overall, these results demonstrate that VEGFCc156s had a multifaceted therapeutic effect to prevent angiotensin II-induced cardiac dysfunction by improving cardiac lymphatic function, alleviating fibrosis and inflammation, and ameliorating hypertension.

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Na Li et al.
    Research Article

    Brain natriuretic peptide (BNP) treatment increases heart function and decreases heart dilation after myocardial infarction (MI). Here, we investigated whether part of the cardioprotective effect of BNP in infarcted hearts related to improved neovascularisation. Infarcted mice were treated with saline or BNP for 10 days. BNP treatment increased vascularisation and the number of endothelial cells in all areas of infarcted hearts. Endothelial cell lineage tracing showed that BNP directly stimulated the proliferation of resident endothelial cells via NPR-A binding and p38 MAP kinase activation. BNP also stimulated the proliferation of WT1+ epicardium-derived cells but only in the hypoxic area of infarcted hearts. Our results demonstrated that these immature cells have a natural capacity to differentiate into endothelial cells in infarcted hearts. BNP treatment increased their proliferation but not their differentiation capacity. We identified new roles for BNP that hold potential for new therapeutic strategies to improve recovery and clinical outcome after MI.