Learning speed and detection sensitivity controlled by distinct cortico-fugal neurons in visual cortex

  1. Sarah Ruediger  Is a corresponding author
  2. Massimo Scanziani  Is a corresponding author
  1. UCSF and HHMI, United States

Abstract

Vertebrates can change their behavior upon detection of visual stimuli according to the outcome their actions produce. Such goal-directed behavior involves evolutionary conserved brain structures like the striatum and optic tectum, which receive ascending visual input from the periphery. In mammals, however, these structures also receive descending visual input from visual cortex (VC), via neurons that give rise to cortico-fugal projections. The function of cortico-fugal neurons in visually-guided, goal-directed behavior remains unclear. Here we address the impact of two populations of cortico-fugal neurons in mouse VC in the learning and performance of a visual detection task. We show that the ablation of striatal projecting neurons reduces learning speed while the ablation of superior colliculus projecting neurons does not impact learning but reduces detection sensitivity. This functional dissociation between distinct cortico-fugal neurons in controlling learning speed and detection sensitivity suggests an adaptive contribution of cortico-fugal pathways even in simple goal-directed behavior.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Numerical data for graphs represented in figures 1-6, figure 1-figure supplement 2,3,4,5, figure 2-figure supplement 1, figure 4-figure supplement 1 are provided as source data files. The software used to generate visual stimuli and record neuronal activity is available at: https://github.com/mscaudill/neuroGit and https://github.com/aresulaj/ResRueOlsSca18.

Article and author information

Author details

  1. Sarah Ruediger

    Physiology, UCSF and HHMI, San Francisco, United States
    For correspondence
    sarruedi@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Massimo Scanziani

    Physiology, UCSF and HHMI, San Francisco, United States
    For correspondence
    massimo@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5331-9686

Funding

National Eye Institute (NIH R01EY025668)

  • Massimo Scanziani

Howard Hughes Medical Institute

  • Massimo Scanziani

European Molecular Biology Organization (ALTF741-2012)

  • Sarah Ruediger

Swiss National Science Foundation (151168)

  • Sarah Ruediger

Swiss National Science Foundation (138719)

  • Sarah Ruediger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures were performed with the approval of the Committee on Animal Care at UCSD and UCSF. Authorization # AN179056

Reviewing Editor

  1. Inna Slutsky, Tel Aviv University, Israel

Publication history

  1. Received: May 23, 2020
  2. Accepted: December 6, 2020
  3. Accepted Manuscript published: December 7, 2020 (version 1)
  4. Version of Record published: December 18, 2020 (version 2)

Copyright

© 2020, Ruediger & Scanziani

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,697
    Page views
  • 400
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sarah Ruediger
  2. Massimo Scanziani
(2020)
Learning speed and detection sensitivity controlled by distinct cortico-fugal neurons in visual cortex
eLife 9:e59247.
https://doi.org/10.7554/eLife.59247

Further reading

    1. Neuroscience
    Sudeshna Das Chakraborty et al.
    Research Article

    Understanding neuronal representations of odor-evoked activities and their progressive transformation from the sensory level to higher brain centers features one of the major aims in olfactory neuroscience. Here, we investigated how odor information is transformed and represented in higher-order neurons of the lateral horn, one of the higher olfactory centers implicated in determining innate behavior, using Drosophila melanogaster. We focused on a subset of third-order glutamatergic lateral horn neurons (LHNs) and characterized their odor coding properties in relation to their presynaptic partner neurons, the projection neurons (PNs) by two-photon functional imaging. We show that odors evoke reproducible, stereotypic, and odor-specific response patterns in LHNs. Notably, odor-evoked responses in these neurons are valence-specific in a way that their response amplitude is positively correlated with innate odor preferences. We postulate that this valence-specific activity is the result of integrating inputs from multiple olfactory channels through second-order neurons. GRASP and micro-lesioning experiments provide evidence that glutamatergic LHNs obtain their major excitatory input from uniglomerular PNs, while they receive an odor-specific inhibition through inhibitory multiglomerular PNs. In summary, our study indicates that odor representations in glutamatergic LHNs encode hedonic valence and odor identity and primarily retain the odor coding properties of second-order neurons.

    1. Neuroscience
    Shreya Saxena et al.
    Research Article

    Learned movements can be skillfully performed at different paces. What neural strategies produce this flexibility? Can they be predicted and understood by network modeling? We trained monkeys to perform a cycling task at different speeds, and trained artificial recurrent networks to generate the empirical muscle-activity patterns. Network solutions reflected the principle that smooth well-behaved dynamics require low trajectory tangling. Network solutions had a consistent form, which yielded quantitative and qualitative predictions. To evaluate predictions, we analyzed motor cortex activity recorded during the same task. Responses supported the hypothesis that the dominant neural signals reflect not muscle activity, but network-level strategies for generating muscle activity. Single-neuron responses were better accounted for by network activity than by muscle activity. Similarly, neural population trajectories shared their organization not with muscle trajectories, but with network solutions. Thus, cortical activity could be understood based on the need to generate muscle activity via dynamics that allow smooth, robust control over movement speed.