AAV ablates neurogenesis in the adult murine hippocampus

  1. Stephen Johnston
  2. Sarah L Parylak
  3. Stacy Kim
  4. Nolan Mac
  5. Christina Lim
  6. Iryna Gallina
  7. Cooper Bloyd
  8. Alexander Newberry
  9. Christian D Saavedra
  10. Ondrej Novak
  11. J Tiago Gonçalves
  12. Fred H Gage  Is a corresponding author
  13. Matthew Shtrahman  Is a corresponding author
  1. Neurosciences Graduate Program, University of California, San Diego, United States
  2. Laboratory of Genetics, Salk Institute for Biological Studies, United States
  3. Department of Neurosciences, University of California, San Diego, United States
  4. Department of Biology, University of California, San Diego, United States
  5. Department of Physics, University of California, San Diego, United States
  6. Laboratory of Experimental Epileptology, Department of Physiology, Second Faculty of Medicine, Charles University, United Kingdom
  7. Ruth L. and David S. Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, United States
  8. Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, United States
4 figures, 2 tables and 2 additional files

Figures

Figure 1 with 1 supplement
rAAV eliminates abDGCs in a dose-dependent manner.

(A) Experimental design of rAAV injection into DG following indelible labeling of adult-born DGCs with BrdU. (B, left) Representative images showing Prox1 and BrdU used for quantification. (B, …

Figure 1—source data 1

Source data for Figure 1.

Spreadsheets containing source data for graphs displayed in Figure 1.

https://cdn.elifesciences.org/articles/59291/elife-59291-fig1-data1-v2.zip
Figure 1—figure supplement 1
rAAV-dependent toxicity.

(A) The amount of reduction in DCX expression induced by rAAV is variable at 2 weeks post-injection but is present despite differences in viral core (Salk, Upenn), purification method (CsCl, …

Figure 1—figure supplement 1—source data 1

Source data for Figure 1—figure supplement 1.

Spreadsheets containing source data for graphs displayed in Figure 1—figure supplement 1.

https://cdn.elifesciences.org/articles/59291/elife-59291-fig1-figsupp1-data1-v2.zip
Figure 2 with 2 supplements
Developmental stage determines susceptibility to rAAV-induced cell loss.

(A) Experimental design to assess the effect of rAAV post-injection interval on the survival of different NPC types. Following labeling with BrdU, mice are injected unilaterally with 1 µL of 3 e12 …

Figure 2—source data 1

Source data for Figure 2.

Spreadsheets containing source data for graphs displayed in Figure 2.

https://cdn.elifesciences.org/articles/59291/elife-59291-fig2-data1-v2.zip
Figure 2—figure supplement 1
Cell-type-specific cell loss.

(A–F) Co-localization of GFP and neurogenesis markers 1 week after ipsilateral injection of AAV1-CAG-GFP into the DG without BrdU. Animals also received contralateral saline injection. (A, B) …

Figure 2—figure supplement 1—source data 1

Source data for Figure 2—figure supplement 1.

Spreadsheets containing source data for graphs displayed in Figure 2—figure supplement 1.

https://cdn.elifesciences.org/articles/59291/elife-59291-fig2-figsupp1-data1-v2.zip
Figure 2—figure supplement 2
Inflammation and cell loss.

(A) Representative images of increased microglia activation 4 weeks after rAAV injection. (B) Extending experiments from Figure 2A–E, Iba1 intensity is not significantly changed in subgranular zone …

Figure 2—figure supplement 2—source data 1

Source data for Figure 2—figure supplement 2.

Spreadsheets containing source data for graphs displayed in Figure 2—figure supplement 2.

https://cdn.elifesciences.org/articles/59291/elife-59291-fig2-figsupp2-data1-v2.zip
Figure 3 with 1 supplement
rAAV induces toxicity in NPCs in vitro.

(A) Dose-dependent inhibition of NPC proliferation by rAAV; initial multiplicity of infectivity (MOI) of 1 e7 viral particles/cell arrests mNPC proliferation by 24 hr. MOI of 1 E6 results in slower …

Figure 3—source data 1

Source data for Figure 3.

Spreadsheets containing source data for graphs displayed in Figure 3.

https://cdn.elifesciences.org/articles/59291/elife-59291-fig3-data1-v2.zip
Figure 3—figure supplement 1
FLOW Cytometry gating strategy for analysis of AAV ITR-induced cell death during cell cycle.

(A) Representative gating strategy for selection of single and dividing cells. Example for PBS sample shown in B. (B) Representative two-parameter density plots used to determine population …

Figure 3—figure supplement 1—source data 1

Source data for Figure 3—figure supplement 1.

Spreadsheets containing source data for graphs displayed in Figure 3—figure supplement 1.

https://cdn.elifesciences.org/articles/59291/elife-59291-fig3-figsupp1-data1-v2.zip
Figure 4 with 1 supplement
AAV retro serotype permits studies of DGC activity in vivo without ablating adult neurogenesis.

(A) Representative images showing cFos and Dapi used for quantification. (B) Mature DGCs are hyperactive following rAAV-induced cell loss in a dose-dependent manner for injected titers between 3e12 …

Figure 4—source data 1

Source data for Figure 4.

Spreadsheets containing source data for graphs displayed in Figure 4.

https://cdn.elifesciences.org/articles/59291/elife-59291-fig4-data1-v2.zip
Figure 4—figure supplement 1
Calcium imaging following 2 week knockdown of adult neurogenesis.

(A) Additional analysis of experiments described in Figure 4A,B demonstrate that cFOS activation in mature DGCs is significantly correlated with knockdown efficiency of adult neurogenesis (n = 23 …

Figure 4—figure supplement 1—source data 1

Source data for Figure 4—figure supplement 1.

Spreadsheets containing source data for graphs displayed in Figure 4—figure supplement 1.

https://cdn.elifesciences.org/articles/59291/elife-59291-fig4-figsupp1-data1-v2.zip

Tables

Table 1
DG Injection coordinates.

Injection coordinates as measured from bregma adjusted for measured distance between lambda and bregma (Λ-B): anterior–posterior (A/P), medial–lateral (M/L); and dorsoventral depth from dura (D/V).

Λ-B [mm]A/P
[mm]
M/L
[mm]
D/V
[mm]
3.0−1.5±1.5−1.8
3.2−1.6±1.55−1.8
3.4−1.7±1.6−1.9
3.6−1.8±1.65−1.9
3.8−1.9±1.7−1.95
4.0−2.0±1.75−2.0
Appendix 1—key resources table
Reagent type (species) or resourceDesignationSource or referenceIdentifiersAdditional information
Strain, strain background (Mus musculus)C57BL/6JThe Jackson Laboratory#000664
Strain, strain background (Mus musculus)STING-KO (B6(Cg)-Sting1tm1.2Camb/J
)
The Jackson Laboratory Jin et al., 2011#025805
Chemical compound, drugBrdU (5-Bromo-2’-deoxyuridine)Millipore SigmaB500250 mg/kg/day i.p. for 3 days
OtherNanoject IIIDrummond Science3-000-207
Strain, strain background (AAV)AAV1-CAG-GFPAddgene37825
Strain, strain background (AAV)AAV1-CAG::flex-eGFP-WPRE-bGHAddgene and University of Pennsylvania51502
Strain, strain background (AAV)AAVretro-CaMKIIa::NES-jRGECO1a-WPRE-SV40Gage, Salk Viral Core
Strain, strain background (AAV)AAV8-CaMKIIa::NES-jRGECO1a-WPRE-SV40Gage, Salk Viral Core
Strain, strain background (AAV)AAV1-Syn::NES-jRGECO1a-WPRE-SV40Addgene and University of Pennsylvania100854
Strain, strain background (AAV)AAV8-CaMKIIa::mCherry-WPRE-bGHAddgene and Salk Viral Core114469
Strain, strain background (AAV)AAV8 capsidUniversity of North Carolina Viral Vector Core pXR8, Salk Viral Core
Other3 mm glass coverslipWarner InstrumentsCS-3R#1 thickness
OtherOptibond All-In-OneKerr Dental33381
Other2-Photon Laser Scanning Microscope Movable Objective Microscope (MOM)Sutter Instruments
Other1070 nm femtosecond-pulsed laserCoherentFidelity-2
OtherNikon 16X water immersion objective0.8 NA, NikonCFI75 LWD 16X W
Software, algorithmMatlabMathWorks
Software, algorithmFlowJoBD Biosciences
Software, algorithmPrism 9.0GraphPad
AntibodyAnti-BrdU
(rat monoclonal)
Accurate. Novus, AbcamOBT0030, Accurate; NB500-169, Novus; AB6326, AbcamIHC (1:250)
AntibodyAnti-cleaved-CASPASE3
(rabbit polyclonal)
Cell Signaling9661IHC (1:200)
AntibodyAnti-CFOS
(goat polyclonal)
Santa Cruzsc-52-GIHC (1:500)
AntibodyAnti-CFOS
(rabbit polyclonal)
Synaptic Systems226003IHC (1:500)
AntibodyAnti-DCX
(goat polyclonal)
Santa Cruzsc-8066IHC (1:50–500)
AntibodyAnti-DCX
(guinea pig polyclonal)
MilliporeAB2253IHC (1:500)
AntibodyAnti-GFAP
(chicken polyclonal)
MilliporeAB5541Ihc (1:1000)
AntibodyAnti-GFP
(chicken polyclonal)
Aves LabsGFP-1020IHC (1:1000)
AntibodyAnti-PROX1
(rabbit polyclonal)
Abcamab101851IHC (1:500)
AntibodyAnti-SOX2
(rabbit polyclonal)
Cell Signaling2748IHC (1:250)
AntibodyAnti-TBR2
(rabbit monoclonal)
Abcamab183991IHC (1:500–1000)
AntibodyAnti-SOX2
(rat monoclonal)
Invitrogen14981182IHC (1:1000)
AntibodyAnti-chicken-AlexaFluor488
(donkey polyclonal)
Jackson Immuno Research Laboratories703-545-155IHC (1:250)
AntibodyAnti-rat-AlexaFluor647
(donkey polyclonal)
Jackson Immuno Research Laboratories712-605-153IHC (1:250)
AntibodyAnti-rabbit-Cy5
(donkey polyclonal)
Jackson Immuno Research Laboratories711-175-152IHC (1:250)
AntibodyAnti-rabbit-Cy3
(donkey polyclonal)
Jackson Immuno Research Laboratories711-165-152Ihc (1:250)
AntibodyAnti-rabbit-AlexaFluor488
(donkey polyclonal)
Jackson Immuno Research Laboratories711-545-152IHC (1:250)
AntibodyAnti-guinea pig-AlexaFluor488
(donkey polyclonal)
Jackson Immuno Research Laboratories706-545-148IHC (1:250)
AntibodyAnti-guinea pig-Cy3
(donkey polyclonal)
Jackson Immuno Research Laboratories706-165-148IHC (1:250)
AntibodyAnti-guinea pig-AlexaFluor647
(donkey polyclonal)
Jackson Immuno Research Laboratories706-605-148IHC (1:250)
AntibodyAnti-goat-Cy5
(donkey polyclonal)
Jackson Immuno Research Laboratories705-175-147IHC (1:250)
Antibodyanti-goat-Cy3
(donkey polyclonal)
Jackson Immuno Research Laboratories705-165-147IHC (1:250)
AntibodyAnti-goat-AlexaFlour488
(donkey polyclonal)
Jackson Immuno Research Laboratories705-545-147IHC (1:250)
OtherZeiss laser scanning confocal microscopeZeissLSM 710, LSM 780, or Airyscan 88020x and 63x objective
OtherSlide scanning microscopeOlympusVS-12010× objective
OtherLibra 120kV PLUS EF/TEMCarl Zeiss2kx2k CCD camera, 20,000x magnification
Commercial assay or kitAmaxa Mouse NSC Nucleofector KitLonzaVPG-1004
Sequenced-based reagentITRIntegrated DNA Technologies20nmole Ultramer DNA Oligo5’-Biotin- AGGAACCCC
TAGTGATGGAGTTGG
CCACTCCCTCTCTGCG
CGCTCGCTCGCTCAC
TGAGGCCGGGCGACC
AAAGGTCGCCCGACG
CCCGGGCTTTGCCCGG
GCGGCCTCAGTGAGCG
AGCGAGCGCGCAGAGA
GGGAGTGGCCAA-3’
Sequenced-based reagentITR ScrambleIntegrated DNA Technologies20nmole Ultramer DNA Oligo5’-Biotin-CCACATACCGT
\CTAACGTACGGATTCC
GATGCCCAGATATATAG
TAGATGTCTTATTTGTG
GCGGAATAGCGCCAGAG
CGTGTAGGCCAACCTTA
GTTCTCCATGGAAGGCA
TCTACCGAACTCGGTTGC
GCGGCCAAATTGGAT-3’
Chemical compound, drugVybrant DyeCycle Green StainThermo FisherV350041:2000
Chemical compound, drugZombie UV Fixable Viability KitBioLegend4231071:1000
OtherCountBright Absolute Counting BeadsThermo FisherC36950~5000 beads/sample
OtherLSRFortessa X-20BD Biosciences and UCSD Human Embryonic Stem Cell Core

Additional files

Supplementary file 1

Tukey’s test for group comparisons of AAV ITR and SCR control.

Post hoc comparisons of the electroporation groups presented in Figure 3E,F following two-way ANOVA. *p<0.05, **p<0.01, ***p<0.001, n.s. = not significant.

https://cdn.elifesciences.org/articles/59291/elife-59291-supp1-v2.docx
Transparent reporting form
https://cdn.elifesciences.org/articles/59291/elife-59291-transrepform-v2.docx

Download links