1. Developmental Biology
  2. Neuroscience
Download icon

Comparison of induced neurons reveals slower structural and functional maturation in humans than in apes

  1. Maria Schörnig
  2. Xiangchun Ju
  3. Luise Fast
  4. Sebastian Ebert
  5. Anne Weigert
  6. Sabina Kanton
  7. Theresa Schaffer
  8. Nael Nadif Kasri
  9. Barbara Treutlein
  10. Benjamin Marco Peter
  11. Wulf Hevers
  12. Elena Taverna  Is a corresponding author
  1. Max Planck Institute for Evolutionary Anthropology, Germany
  2. Radboud University Medical Center, Netherlands
Research Article
  • Cited 11
  • Views 3,152
  • Annotations
Cite this article as: eLife 2021;10:e59323 doi: 10.7554/eLife.59323

Abstract

We generated induced excitatory neurons (iNeurons, iNs) from chimpanzee, bonobo and human stem cells by expressing the transcription factor neurogenin‑2 (NGN2). Single cell RNA sequencing (scRNAseq) showed that genes involved in dendrite and synapse development are expressed earlier during iNs maturation in the chimpanzee and bonobo than the human cells. In accordance, during the first two weeks of differentiation, chimpanzee and bonobo iNs showed repetitive action potentials and more spontaneous excitatory activity than human iNs, and extended neurites of higher total length. However, the axons of human iNs were slightly longer at 5 weeks of differentiation. The timing of the establishment of neuronal polarity did not differ between the species. Chimpanzee, bonobo and human neurites eventually reached the same level of structural complexity. Thus, human iNs develop slower than chimpanzee and bonobo iNs and this difference in timing likely depends on functions downstream of NGN2.

Data availability

Sequencing data for single cells have been deposited in ArrayExpress under the accession code E-MTAB-9233 and under Mendeley Data with doi: 10.17632/y3s4hnyvg6. To make our scRNAseq data accessible to the neuroscience community, we provide a ShinyApp-based web browser for data exploration, called iNeuronExplorer. https://bioinf.eva.mpg.de/shiny/iNeuronExplorer/ Morphological data for neurons and a custom made script for analysis have been deposited in GitHub under the URL: https://github.com/BenjaminPeter/schornig_ineuron.

The following data sets were generated
    1. Kanton S
    (2020) iNeuronExplorer
    MPI EVA webbrowser, shiny/iNeuronExplorer/.
The following previously published data sets were used

Article and author information

Author details

  1. Maria Schörnig

    Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiangchun Ju

    Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Luise Fast

    Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Sebastian Ebert

    Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Anne Weigert

    Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Sabina Kanton

    Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Theresa Schaffer

    Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Nael Nadif Kasri

    Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Barbara Treutlein

    Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Benjamin Marco Peter

    Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2526-8081
  11. Wulf Hevers

    Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1881-5913
  12. Elena Taverna

    Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    For correspondence
    elena_taverna@eva.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2430-4725

Funding

This work was supported by the Max Planck Society.The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: For this study we used three human (hiPS409-B2, SC102A1, HmRNA), three chimpanzee (SandraA, JoC, ciPS01) and one bonobo (BmRNA) iPS cell lines and one additional human ES cell line (H9). The human iPSC lines hiPS409-B2 and SC102A1 were purchased from the Riken BRC Cellbank and System Biosciences, respectively. The human iPSCs line HmRNA (generated in this study) was reprogrammed from human dermal fibroblasts using the StemMACS mRNA transfection kit. The cell line was validated for pluripotency markers by immunohistochemical staining using the Human Pluripotent Stem Cell 3-Colour Immunohistochemistry Kit and were differentiated into the three different germ layers using the Human Pluripotent Stem Cell Functional Identification kit and StemMACS Trilineage Differentiation Kit. Karyotyping was carried out using Giemsa banding at the Stem Cell Engineering facility, a core facility of CMCB at Technische Universität Dresden. Karyotypes were found to be normal. The human ES cell line H9 was purchased from WiCell. The chimpanzee iPSC lines SandraA and JoC as well as the bonobo iPSCs line BmRNA were generated in a previous study (Kanton et al., Nature, 2019). The chimpanzee iPSCs ciPS01 line was provided by the Max-Delbrück-Centrum für Molekulare Medizin, Berlin.The rtT A/Ngn2-positive iPSCs/ESCs hiPS409-B2_Ngn2, SandraA_Ngn2, BmRNA_Ngn2, H9_Ngn2, SC102A1_Ngn2, HmRNA_Ngn2, ciPS01_Ngn2 and JoC_Ngn2 were generated using lentiviral vectors to stably integrate the transgenes into the genome of the stem cells and differentiate the stem cells into neurons as previously described by Frega et al., Jove, 2017.Our cultures were regularly controlled for mycoplasma.Permission to work with human and non-human primate iPSC lines and Ngn2-inducible cell lines was obtained through the Sächsisches Staatsministerium für Umwelt und Landwirtschaft (Az.: 55-8811.72/26, Az.: 55-8811.72/26/350). The use of human ESCs was approved by the ethics committee of the Robert Koch Institut (https://www.rki.de/DE/Content/Gesund/Stammzellen/Register/reg-20161027-Paeaebo.html).

Reviewing Editor

  1. Anita Bhattacharyya, University of Wisconsin, Madison, United States

Publication history

  1. Received: May 26, 2020
  2. Accepted: January 19, 2021
  3. Accepted Manuscript published: January 20, 2021 (version 1)
  4. Version of Record published: February 8, 2021 (version 2)

Copyright

© 2021, Schörnig et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,152
    Page views
  • 360
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Neuroscience
    David Sokolov et al.
    Research Article

    Despite mounting evidence that the mammalian retina is exceptionally reliant on proper NAD+ homeostasis for health and function, the specific roles of subcellular NAD+ pools in retinal development, maintenance, and disease remain obscure. Here, we show that deletion of the nuclear-localized NAD+ synthase nicotinamide mononucleotide adenylyltransferase-1 (NMNAT1) in the developing murine retina causes early and severe degeneration of photoreceptors and select inner retinal neurons via multiple distinct cell death pathways. This severe phenotype is associated with disruptions to retinal central carbon metabolism, purine nucleotide synthesis, and amino acid pathways. Furthermore, transcriptomic and immunostaining approaches reveal dysregulation of a collection of photoreceptor and synapse-specific genes in NMNAT1 knockout retinas prior to detectable morphological or metabolic alterations. Collectively, our study reveals previously unrecognized complexity in NMNAT1-associated retinal degeneration and suggests a yet-undescribed role for NMNAT1 in gene regulation during photoreceptor terminal differentiation.

    1. Developmental Biology
    2. Neuroscience
    Nishtha Ranawat, Ichiro Masai
    Research Article

    Microglia are brain-resident macrophages that function as the first line of defense in brain. Embryonic microglial precursors originate in peripheral mesoderm and migrate into the brain during development. However, the mechanism by which they colonize the brain is incompletely understood. The retina is one of the first brain regions to accommodate microglia. In zebrafish, embryonic microglial precursors use intraocular hyaloid blood vessels as a pathway to migrate into the optic cup via the choroid fissure. Once retinal progenitor cells exit the cell cycle, microglial precursors associated with hyaloid blood vessels start to infiltrate the retina preferentially through neurogenic regions, suggesting that colonization of retinal tissue depends upon the neurogenic state. Along with blood vessels and retinal neurogenesis, IL34 also participates in microglial precursor colonization of the retina. Altogether, CSF receptor signaling, blood vessels, and neuronal differentiation function as cues to create an essential path for microglial migration into developing retina.