Comparison of induced neurons reveals slower structural and functional maturation in humans than in apes

  1. Maria Schörnig
  2. Xiangchun Ju
  3. Luise Fast
  4. Sebastian Ebert
  5. Anne Weigert
  6. Sabina Kanton
  7. Theresa Schaffer
  8. Nael Nadif Kasri
  9. Barbara Treutlein
  10. Benjamin Marco Peter
  11. Wulf Hevers
  12. Elena Taverna  Is a corresponding author
  1. Max Planck Institute for Evolutionary Anthropology, Germany
  2. Radboud University Medical Center, Netherlands

Abstract

We generated induced excitatory neurons (iNeurons, iNs) from chimpanzee, bonobo and human stem cells by expressing the transcription factor neurogenin‑2 (NGN2). Single cell RNA sequencing (scRNAseq) showed that genes involved in dendrite and synapse development are expressed earlier during iNs maturation in the chimpanzee and bonobo than the human cells. In accordance, during the first two weeks of differentiation, chimpanzee and bonobo iNs showed repetitive action potentials and more spontaneous excitatory activity than human iNs, and extended neurites of higher total length. However, the axons of human iNs were slightly longer at 5 weeks of differentiation. The timing of the establishment of neuronal polarity did not differ between the species. Chimpanzee, bonobo and human neurites eventually reached the same level of structural complexity. Thus, human iNs develop slower than chimpanzee and bonobo iNs and this difference in timing likely depends on functions downstream of NGN2.

Data availability

Sequencing data for single cells have been deposited in ArrayExpress under the accession code E-MTAB-9233 and under Mendeley Data with doi: 10.17632/y3s4hnyvg6. To make our scRNAseq data accessible to the neuroscience community, we provide a ShinyApp-based web browser for data exploration, called iNeuronExplorer. https://bioinf.eva.mpg.de/shiny/iNeuronExplorer/ Morphological data for neurons and a custom made script for analysis have been deposited in GitHub under the URL: https://github.com/BenjaminPeter/schornig_ineuron.

The following data sets were generated
    1. Kanton S
    (2020) iNeuronExplorer
    MPI EVA webbrowser, shiny/iNeuronExplorer/.
The following previously published data sets were used

Article and author information

Author details

  1. Maria Schörnig

    Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Xiangchun Ju

    Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Luise Fast

    Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Sebastian Ebert

    Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Anne Weigert

    Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Sabina Kanton

    Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Theresa Schaffer

    Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Nael Nadif Kasri

    Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Barbara Treutlein

    Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Benjamin Marco Peter

    Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2526-8081
  11. Wulf Hevers

    Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1881-5913
  12. Elena Taverna

    Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
    For correspondence
    elena_taverna@eva.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2430-4725

Funding

This work was supported by the Max Planck Society.The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: For this study we used three human (hiPS409-B2, SC102A1, HmRNA), three chimpanzee (SandraA, JoC, ciPS01) and one bonobo (BmRNA) iPS cell lines and one additional human ES cell line (H9). The human iPSC lines hiPS409-B2 and SC102A1 were purchased from the Riken BRC Cellbank and System Biosciences, respectively. The human iPSCs line HmRNA (generated in this study) was reprogrammed from human dermal fibroblasts using the StemMACS mRNA transfection kit. The cell line was validated for pluripotency markers by immunohistochemical staining using the Human Pluripotent Stem Cell 3-Colour Immunohistochemistry Kit and were differentiated into the three different germ layers using the Human Pluripotent Stem Cell Functional Identification kit and StemMACS Trilineage Differentiation Kit. Karyotyping was carried out using Giemsa banding at the Stem Cell Engineering facility, a core facility of CMCB at Technische Universität Dresden. Karyotypes were found to be normal. The human ES cell line H9 was purchased from WiCell. The chimpanzee iPSC lines SandraA and JoC as well as the bonobo iPSCs line BmRNA were generated in a previous study (Kanton et al., Nature, 2019). The chimpanzee iPSCs ciPS01 line was provided by the Max-Delbrück-Centrum für Molekulare Medizin, Berlin.The rtT A/Ngn2-positive iPSCs/ESCs hiPS409-B2_Ngn2, SandraA_Ngn2, BmRNA_Ngn2, H9_Ngn2, SC102A1_Ngn2, HmRNA_Ngn2, ciPS01_Ngn2 and JoC_Ngn2 were generated using lentiviral vectors to stably integrate the transgenes into the genome of the stem cells and differentiate the stem cells into neurons as previously described by Frega et al., Jove, 2017.Our cultures were regularly controlled for mycoplasma.Permission to work with human and non-human primate iPSC lines and Ngn2-inducible cell lines was obtained through the Sächsisches Staatsministerium für Umwelt und Landwirtschaft (Az.: 55-8811.72/26, Az.: 55-8811.72/26/350). The use of human ESCs was approved by the ethics committee of the Robert Koch Institut (https://www.rki.de/DE/Content/Gesund/Stammzellen/Register/reg-20161027-Paeaebo.html).

Reviewing Editor

  1. Anita Bhattacharyya, University of Wisconsin, Madison, United States

Publication history

  1. Received: May 26, 2020
  2. Accepted: January 19, 2021
  3. Accepted Manuscript published: January 20, 2021 (version 1)
  4. Version of Record published: February 8, 2021 (version 2)

Copyright

© 2021, Schörnig et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,330
    Page views
  • 560
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Maria Schörnig
  2. Xiangchun Ju
  3. Luise Fast
  4. Sebastian Ebert
  5. Anne Weigert
  6. Sabina Kanton
  7. Theresa Schaffer
  8. Nael Nadif Kasri
  9. Barbara Treutlein
  10. Benjamin Marco Peter
  11. Wulf Hevers
  12. Elena Taverna
(2021)
Comparison of induced neurons reveals slower structural and functional maturation in humans than in apes
eLife 10:e59323.
https://doi.org/10.7554/eLife.59323

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Brian Silver, Kevin Gerrish, Erik Tokar
    Research Article

    Cell-free DNA (cfDNA) present in the bloodstream or other bodily fluids holds potential as a non-invasive diagnostic for early disease detection. However, it remains unclear what cfDNA markers might be produced in response to specific tissue-level events. Organoid systems present a tractable and efficient method for screening cfDNA markers. However, research investigating the release of cfDNA from organoids is limited. Here, we present a scalable method for high-throughput screening of cfDNA from cardiac organoids. We demonstrate that cfDNA is recoverable from cardiac organoids, and that cfDNA release is highest early in differentiation. Intriguingly, we observed that the fraction of cell-free mitochondrial DNA appeared to decrease as the organoids developed, suggesting a possible signature of cardiac organoid maturation, or other cardiac growth-related tissue-level events. We also observe alterations in the prevalence of specific genomic regions in cardiac organoid-derived cfDNA at different timepoints during growth. In addition, we identify cfDNA markers that were increased upon addition of cardiotoxic drugs, prior to the onset of tissue demise. Together, these results indicate that cardiac organoids may be a useful system towards the identification of candidate predictive cfDNA markers of cardiac tissue development and demise.

    1. Developmental Biology
    2. Neuroscience
    Sweta Parab, Olivia A Card ... Ryota L Matsuoka
    Research Article Updated

    Fenestrated and blood-brain barrier (BBB)-forming endothelial cells constitute major brain capillaries, and this vascular heterogeneity is crucial for region-specific neural function and brain homeostasis. How these capillary types emerge in a brain region-specific manner and subsequently establish intra-brain vascular heterogeneity remains unclear. Here, we performed a comparative analysis of vascularization across the zebrafish choroid plexuses (CPs), circumventricular organs (CVOs), and retinal choroid, and show common angiogenic mechanisms critical for fenestrated brain capillary formation. We found that zebrafish deficient for Gpr124, Reck, or Wnt7aa exhibit severely impaired BBB angiogenesis without any apparent defect in fenestrated capillary formation in the CPs, CVOs, and retinal choroid. Conversely, genetic loss of various Vegf combinations caused significant disruptions in Wnt7/Gpr124/Reck signaling-independent vascularization of these organs. The phenotypic variation and specificity revealed heterogeneous endothelial requirements for Vegfs-dependent angiogenesis during CP and CVO vascularization, identifying unexpected interplay of Vegfc/d and Vegfa in this process. Mechanistically, expression analysis and paracrine activity-deficient vegfc mutant characterization suggest that endothelial cells and non-neuronal specialized cell types present in the CPs and CVOs are major sources of Vegfs responsible for regionally restricted angiogenic interplay. Thus, brain region-specific presentations and interplay of Vegfc/d and Vegfa control emergence of fenestrated capillaries, providing insight into the mechanisms driving intra-brain vascular heterogeneity and fenestrated vessel formation in other organs.