Gene regulation gravitates towards either addition or multiplication when combining the effects of two signals

  1. Eric M Sanford
  2. Benjamin L Emert
  3. Allison Coté
  4. Arjun Raj  Is a corresponding author
  1. University of Pennsylvania, United States

Abstract

Two different cell signals often affect transcription of the same gene. In such cases, it is natural to ask how the combined transcriptional response compares to the individual responses. The most commonly used mechanistic models predict additive or multiplicative combined responses, but a systematic genome-wide evaluation of these predictions is not available. Here, we analyzed the transcriptional response of human MCF-7 cells to retinoic acid and TGF-β, applied individually and in combination. The combined transcriptional responses of induced genes exhibited a range of behaviors, but clearly favored both additive and multiplicative outcomes. We performed paired chromatin accessibility measurements and found that increases in accessibility were largely additive. There was some association between super-additivity of accessibility and multiplicative or super-multiplicative combined transcriptional responses, while sub-additivity of accessibility associated with additive transcriptional responses. Our findings suggest that mechanistic models of combined transcriptional regulation must be able to reproduce a range of behaviors.

Data availability

We have uploading our data to NIH GEO. We are committed to sharing this manuscript's data openly and will happily upload it to any additional databases if requested.All of our raw and processed data (RNA-seq and ATAC-seq data sets) are also available on Dropbox and Github:Data:https://www.dropbox.com/sh/fhx7huyhhtf8fux/AACKW5Bd7k34uy6Rrk3k0WZ4a?dl=0&lst=Analysis Code:https://github.com/emsanford/combined_responses_paperhttps://github.com/arjunrajlaboratory/atac-seq_pipeline_paired-endhttps://github.com/arjunrajlaboratory/RajLabSeqTools

The following data sets were generated

Article and author information

Author details

  1. Eric M Sanford

    Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9232-9334
  2. Benjamin L Emert

    Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  3. Allison Coté

    Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  4. Arjun Raj

    Department of Bioengineering, University of Pennsylvania, Philadelphia, United States
    For correspondence
    arjunraj@seas.upenn.edu
    Competing interests
    Arjun Raj, Receives consulting income and royalties related to Stellaris{trade mark, serif} RNA FISH probes..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2915-6960

Funding

National Institutes of Health (R01 CA238237)

  • Arjun Raj

National Institutes of Health (T32 GM007170)

  • Benjamin L Emert

National Institutes of Health (T32 HG000046)

  • Benjamin L Emert

National Institutes of Health (T32 GM- 07229)

  • Allison Coté

Tara Miller Foundation

  • Arjun Raj

National Institutes of Health (SPORE P50 CA174523)

  • Arjun Raj

National Institutes of Health (F30 HG010986)

  • Eric M Sanford

National Institutes of Health (Transformative Research Award R01 GM137425)

  • Arjun Raj

National Institutes of Health (R01 CA232256)

  • Arjun Raj

National Science Foundation (CAREER 1350601)

  • Arjun Raj

National Institutes of Health (U01 CA227550)

  • Arjun Raj

National Institutes of Health (U01 HL129998)

  • Arjun Raj

National Institutes of Health (RM1 HG007743)

  • Arjun Raj

National Institutes of Health (P30 CA016520)

  • Arjun Raj

National Institutes of Health (F30 CA236129)

  • Benjamin L Emert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jie Xiao, Johns Hopkins University, United States

Version history

  1. Received: May 28, 2020
  2. Accepted: December 4, 2020
  3. Accepted Manuscript published: December 7, 2020 (version 1)
  4. Version of Record published: December 29, 2020 (version 2)

Copyright

© 2020, Sanford et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,886
    views
  • 349
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric M Sanford
  2. Benjamin L Emert
  3. Allison Coté
  4. Arjun Raj
(2020)
Gene regulation gravitates towards either addition or multiplication when combining the effects of two signals
eLife 9:e59388.
https://doi.org/10.7554/eLife.59388

Share this article

https://doi.org/10.7554/eLife.59388

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.