Gene regulation gravitates towards either addition or multiplication when combining the effects of two signals

  1. Eric M Sanford
  2. Benjamin L Emert
  3. Allison Coté
  4. Arjun Raj  Is a corresponding author
  1. University of Pennsylvania, United States

Abstract

Two different cell signals often affect transcription of the same gene. In such cases, it is natural to ask how the combined transcriptional response compares to the individual responses. The most commonly used mechanistic models predict additive or multiplicative combined responses, but a systematic genome-wide evaluation of these predictions is not available. Here, we analyzed the transcriptional response of human MCF-7 cells to retinoic acid and TGF-β, applied individually and in combination. The combined transcriptional responses of induced genes exhibited a range of behaviors, but clearly favored both additive and multiplicative outcomes. We performed paired chromatin accessibility measurements and found that increases in accessibility were largely additive. There was some association between super-additivity of accessibility and multiplicative or super-multiplicative combined transcriptional responses, while sub-additivity of accessibility associated with additive transcriptional responses. Our findings suggest that mechanistic models of combined transcriptional regulation must be able to reproduce a range of behaviors.

Data availability

We have uploading our data to NIH GEO. We are committed to sharing this manuscript's data openly and will happily upload it to any additional databases if requested.All of our raw and processed data (RNA-seq and ATAC-seq data sets) are also available on Dropbox and Github:Data:https://www.dropbox.com/sh/fhx7huyhhtf8fux/AACKW5Bd7k34uy6Rrk3k0WZ4a?dl=0&lst=Analysis Code:https://github.com/emsanford/combined_responses_paperhttps://github.com/arjunrajlaboratory/atac-seq_pipeline_paired-endhttps://github.com/arjunrajlaboratory/RajLabSeqTools

The following data sets were generated

Article and author information

Author details

  1. Eric M Sanford

    Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9232-9334
  2. Benjamin L Emert

    Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  3. Allison Coté

    Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
    Competing interests
    No competing interests declared.
  4. Arjun Raj

    Department of Bioengineering, University of Pennsylvania, Philadelphia, United States
    For correspondence
    arjunraj@seas.upenn.edu
    Competing interests
    Arjun Raj, Receives consulting income and royalties related to Stellaris{trade mark, serif} RNA FISH probes..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2915-6960

Funding

National Institutes of Health (R01 CA238237)

  • Arjun Raj

National Institutes of Health (T32 GM007170)

  • Benjamin L Emert

National Institutes of Health (T32 HG000046)

  • Benjamin L Emert

National Institutes of Health (T32 GM- 07229)

  • Allison Coté

Tara Miller Foundation

  • Arjun Raj

National Institutes of Health (SPORE P50 CA174523)

  • Arjun Raj

National Institutes of Health (F30 HG010986)

  • Eric M Sanford

National Institutes of Health (Transformative Research Award R01 GM137425)

  • Arjun Raj

National Institutes of Health (R01 CA232256)

  • Arjun Raj

National Science Foundation (CAREER 1350601)

  • Arjun Raj

National Institutes of Health (U01 CA227550)

  • Arjun Raj

National Institutes of Health (U01 HL129998)

  • Arjun Raj

National Institutes of Health (RM1 HG007743)

  • Arjun Raj

National Institutes of Health (P30 CA016520)

  • Arjun Raj

National Institutes of Health (F30 CA236129)

  • Benjamin L Emert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Sanford et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,139
    views
  • 368
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Eric M Sanford
  2. Benjamin L Emert
  3. Allison Coté
  4. Arjun Raj
(2020)
Gene regulation gravitates towards either addition or multiplication when combining the effects of two signals
eLife 9:e59388.
https://doi.org/10.7554/eLife.59388

Share this article

https://doi.org/10.7554/eLife.59388

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Timothy Fuqua, Yiqiao Sun, Andreas Wagner
    Research Article

    Gene regulation is essential for life and controlled by regulatory DNA. Mutations can modify the activity of regulatory DNA, and also create new regulatory DNA, a process called regulatory emergence. Non-regulatory and regulatory DNA contain motifs to which transcription factors may bind. In prokaryotes, gene expression requires a stretch of DNA called a promoter, which contains two motifs called –10 and –35 boxes. However, these motifs may occur in both promoters and non-promoter DNA in multiple copies. They have been implicated in some studies to improve promoter activity, and in others to repress it. Here, we ask whether the presence of such motifs in different genetic sequences influences promoter evolution and emergence. To understand whether and how promoter motifs influence promoter emergence and evolution, we start from 50 ‘promoter islands’, DNA sequences enriched with –10 and –35 boxes. We mutagenize these starting ‘parent’ sequences, and measure gene expression driven by 240,000 of the resulting mutants. We find that the probability that mutations create an active promoter varies more than 200-fold, and is not correlated with the number of promoter motifs. For parent sequences without promoter activity, mutations created over 1500 new –10 and –35 boxes at unique positions in the library, but only ~0.3% of these resulted in de-novo promoter activity. Only ~13% of all –10 and –35 boxes contribute to de-novo promoter activity. For parent sequences with promoter activity, mutations created new –10 and –35 boxes in 11 specific positions that partially overlap with preexisting ones to modulate expression. We also find that –10 and –35 boxes do not repress promoter activity. Overall, our work demonstrates how promoter motifs influence promoter emergence and evolution. It has implications for predicting and understanding regulatory evolution, de novo genes, and phenotypic evolution.