TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS

Abstract

Disrupted nucleocytoplasmic transport (NCT) has been implicated in neurodegenerative disease pathogenesis; however, the mechanisms by which disrupted NCT causes neurodegeneration remain unclear. In a Drosophila screen, we identified ref(2)P/p62, a key regulator of autophagy, as a potent suppressor of neurodegeneration caused by the GGGGCC hexanucleotide repeat expansion (G4C2 HRE) in C9orf72 that causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that p62 is increased and forms ubiquitinated aggregates due to decreased autophagic cargo degradation. Immunofluorescence and electron microscopy of Drosophila tissues demonstrate an accumulation of lysosome-like organelles that precedes neurodegeneration. These phenotypes are partially caused by cytoplasmic mislocalization of Mitf/TFEB, a key transcriptional regulator of autophagolysosomal function. Additionally, TFEB is mislocalized and downregulated in human cells expressing GGGGCC repeats and in C9-ALS patient motor cortex. Our data suggest that the C9orf72-HRE impairs Mitf/TFEB nuclear import, thereby disrupting autophagy and exacerbating proteostasis defects in C9-ALS/FTD.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kathleen M Cunningham

    Neurology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1347-9087
  2. Kirstin Maulding

    Neurology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2012-9747
  3. Kai Ruan

    Neurology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  4. Mumine Senturk

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  5. Jonathan C Grima

    Brain Science Institute, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  6. Hyun Sung

    Neurology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  7. Zhongyuan Zuo

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    No competing interests declared.
  8. Helen Song

    Neurology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  9. Junli Gao

    Neuroscience, Mayo Clinic, Jacksonville, United States
    Competing interests
    No competing interests declared.
  10. Sandeep Dubey

    Neurology, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  11. Jeffrey D Rothstein

    Brain Science Institute, Johns Hopkins University, Baltimore, United States
    Competing interests
    No competing interests declared.
  12. Ke Zhang

    Neuroscience, Mayo Clinic, Jacksonville, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4794-8355
  13. Hugo J Bellen

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    Hugo J Bellen, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5992-5989
  14. Thomas E Lloyd

    Neurology, Johns Hopkins University, Baltimore, United States
    For correspondence
    tlloyd4@jhmi.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4756-3700

Funding

National Institute of Neurological Disorders and Stroke (R01NS082563,R01NS094239,P30NS050274,F31NS100401)

  • Thomas E Lloyd

Amyotrophic Lateral Sclerosis Association (17-IIP-370)

  • Thomas E Lloyd

National Institute of General Medical Sciences (P40OD018537)

  • Hugo J Bellen

Howard Hughes Medical Institute

  • Hugo J Bellen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Harry T Orr, University of Minnesota, United States

Ethics

Human subjects: The use of human tissue and associated decedents' demographic information was approved by the Johns Hopkins University Institutional Review Board and ethics committee (HIPAA Form 5 exemption, Application 11-02-10-01RD) and from the Ravitz Laboratory (UCSD) through the Target ALS Consortium.

Version history

  1. Received: May 28, 2020
  2. Accepted: December 9, 2020
  3. Accepted Manuscript published: December 10, 2020 (version 1)
  4. Version of Record published: December 23, 2020 (version 2)
  5. Version of Record updated: December 31, 2020 (version 3)

Copyright

© 2020, Cunningham et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,224
    Page views
  • 575
    Downloads
  • 42
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kathleen M Cunningham
  2. Kirstin Maulding
  3. Kai Ruan
  4. Mumine Senturk
  5. Jonathan C Grima
  6. Hyun Sung
  7. Zhongyuan Zuo
  8. Helen Song
  9. Junli Gao
  10. Sandeep Dubey
  11. Jeffrey D Rothstein
  12. Ke Zhang
  13. Hugo J Bellen
  14. Thomas E Lloyd
(2020)
TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS
eLife 9:e59419.
https://doi.org/10.7554/eLife.59419

Share this article

https://doi.org/10.7554/eLife.59419

Further reading

    1. Cell Biology
    Wan-ping Yang, Mei-qi Li ... Qian-qian Luo
    Research Article

    High-altitude polycythemia (HAPC) affects individuals living at high altitudes, characterized by increased red blood cells (RBCs) production in response to hypoxic conditions. The exact mechanisms behind HAPC are not fully understood. We utilized a mouse model exposed to hypobaric hypoxia (HH), replicating the environmental conditions experienced at 6000 m above sea level, coupled with in vitro analysis of primary splenic macrophages under 1% O2 to investigate these mechanisms. Our findings indicate that HH significantly boosts erythropoiesis, leading to erythrocytosis and splenic changes, including initial contraction to splenomegaly over 14 days. A notable decrease in red pulp macrophages (RPMs) in the spleen, essential for RBCs processing, was observed, correlating with increased iron release and signs of ferroptosis. Prolonged exposure to hypoxia further exacerbated these effects, mirrored in human peripheral blood mononuclear cells. Single-cell sequencing showed a marked reduction in macrophage populations, affecting the spleen’s ability to clear RBCs and contributing to splenomegaly. Our findings suggest splenic ferroptosis contributes to decreased RPMs, affecting erythrophagocytosis and potentially fostering continuous RBCs production in HAPC. These insights could guide the development of targeted therapies for HAPC, emphasizing the importance of splenic macrophages in disease pathology.

    1. Cell Biology
    Jurgen Denecke
    Insight

    Mapping proteins in and associated with the Golgi apparatus reveals how this cellular compartment emerges in budding yeast and progresses over time.