A physical mechanism of TANGO1-mediated bulky cargo export
Abstract
The endoplasmic reticulum (ER)-resident protein TANGO1 assembles into a ring around ER exit sites (ERES), and links procollagens in the ER lumen to COPII machinery, tethers, and ER-Golgi intermediate compartment (ERGIC) in the cytoplasm (Raote et al., 2018). Here we present a theoretical approach to investigate the physical mechanisms of TANGO1 ring assembly and how COPII polymerization, membrane tension, and force facilitate the formation of a transport intermediate for procollagen export. Our results indicate that a TANGO1 ring, by acting as a linactant, stabilizes the open neck of a nascent COPII bud. Elongation of such a bud into a transport intermediate commensurate with bulky procollagens is then facilitated by two complementary mechanisms: (i) by relieving membrane tension, possibly by TANGO1-mediated fusion of retrograde ERGIC membranes; and (ii) by force application. Altogether, our theoretical approach identifies key biophysical events in TANGO1-driven procollagen export.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files.
Article and author information
Author details
Funding
Government of Spain (Severo Ochoa" Programme (CEX2019-000910-S)")
- Morgan Chabanon
- Maria F Garcia-Parajo
- Felix Campelo
Spanish Government (BFU2013-44188-P)
- Ishier Raote
- Vivek Malhotra
Spanish Government (Consolider CSD2009-00016)
- Ishier Raote
- Vivek Malhotra
Spanish Government (Severo Ochoa Program SEV-2012-0208)
- Ishier Raote
- Vivek Malhotra
Spanish Government (Maria de Maeztu MDM-2015-0502)
- Vivek Malhotra
BIST (Ignite grant eTANGO)
- Ishier Raote
- Maria F Garcia-Parajo
- Vivek Malhotra
- Felix Campelo
Spanish Ministry of Science and Innovation (IJCI-2017-34751)
- Ishier Raote
Spanish Ministry of Science and Innovation (RYC-2017-22227)
- Felix Campelo
Europen Comission (CoG-681434)
- Nikhil Walani
- Marino Arroyo
Generalitat de Catalunya (2017-SGR-1278)
- Marino Arroyo
ICREA (ICREA academia)
- Marino Arroyo
Government of Spain (BFU2015-73288-JIN)
- Maria F Garcia-Parajo
- Felix Campelo
Spanish Government (Severo Ochoa Program,CEX2018-000797-S)
- Marino Arroyo
State Research Agency (PID2019-106232RB-I00/ 10.13039/501100011033)
- Morgan Chabanon
- Felix Campelo
Government of Spain (FIS2015-63550-R)
- Maria F Garcia-Parajo
- Felix Campelo
Government of Spain (FIS2017-89560-R)
- Morgan Chabanon
- Maria F Garcia-Parajo
- Felix Campelo
Fundacio Privada Cellex
- Morgan Chabanon
- Maria F Garcia-Parajo
- Felix Campelo
Fundacio Privada Mir-Puig
- Morgan Chabanon
- Maria F Garcia-Parajo
- Felix Campelo
Generalitat de Catalunya (CERCA program)
- Ishier Raote
- Morgan Chabanon
- Maria F Garcia-Parajo
- Vivek Malhotra
- Felix Campelo
European Comission (ERC Advanced Grant (GA 788546))
- Morgan Chabanon
- Maria F Garcia-Parajo
- Felix Campelo
LaserLab 4 Europe (GA 654148)
- Morgan Chabanon
- Maria F Garcia-Parajo
- Felix Campelo
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Raote et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,881
- views
-
- 290
- downloads
-
- 30
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
- Microbiology and Infectious Disease
The coordination of cell cycle progression and flagellar synthesis is a complex process in motile bacteria. In γ-proteobacteria, the localization of the flagellum to the cell pole is mediated by the SRP-type GTPase FlhF. However, the mechanism of action of FlhF, and its relationship with the cell pole landmark protein HubP remain unclear. In this study, we discovered a novel protein called FipA that is required for normal FlhF activity and function in polar flagellar synthesis. We demonstrated that membrane-localized FipA interacts with FlhF and is required for normal flagellar synthesis in Vibrio parahaemolyticus, Pseudomonas putida, and Shewanella putrefaciens, and it does so independently of the polar localization mediated by HubP. FipA exhibits a dynamic localization pattern and is present at the designated pole before flagellar synthesis begins, suggesting its role in licensing flagellar formation. This discovery provides insight into a new pathway for regulating flagellum synthesis and coordinating cellular organization in bacteria that rely on polar flagellation and FlhF-dependent localization.
-
- Cell Biology
- Neuroscience
The gut-brain axis mediates bidirectional signaling between the intestine and the nervous system and is critical for organism-wide homeostasis. Here, we report the identification of a peptidergic endocrine circuit in which bidirectional signaling between neurons and the intestine potentiates the activation of the antioxidant response in Caenorhabditis elegans in the intestine. We identify an FMRF-amide-like peptide, FLP-2, whose release from the intestine is necessary and sufficient to activate the intestinal oxidative stress response by promoting the release of the antioxidant FLP-1 neuropeptide from neurons. FLP-2 secretion from the intestine is positively regulated by endogenous hydrogen peroxide (H2O2) produced in the mitochondrial matrix by sod-3/superoxide dismutase, and is negatively regulated by prdx-2/peroxiredoxin, which depletes H2O2 in both the mitochondria and cytosol. H2O2 promotes FLP-2 secretion through the DAG and calcium-dependent protein kinase C family member pkc-2 and by the SNAP25 family member aex-4 in the intestine. Together, our data demonstrate a role for intestinal H2O2 in promoting inter-tissue antioxidant signaling through regulated neuropeptide-like protein exocytosis in a gut-brain axis to activate the oxidative stress response.