Sorting nexin-27 regulates AMPA receptor trafficking through the synaptic adhesion protein LRFN2
Abstract
The endosome-associated cargo adaptor sorting nexin-27 (SNX27) is linked to various neuropathologies through sorting of integral proteins to the synaptic surface, most notably AMPA receptors. To provide a broader view of SNX27-associated pathologies we performed proteomics in rat primary neurons to identify SNX27-dependent cargoes, and identified proteins linked to excitotoxicity, epilepsy, intellectual disabilities and working memory deficits. Focusing on the synaptic adhesion molecule LRFN2, we established that SNX27 binds to LRFN2 and regulates its endosomal sorting. Furthermore, LRFN2 associates with AMPA receptors and knockdown of LRFN2 results in decreased surface AMPA receptor expression, reduced synaptic activity, and attenuated hippocampal long-term potentiation. Overall, our study provides an additional mechanism by which SNX27 can control AMPA receptor-mediated synaptic transmission and plasticity indirectly through the sorting of LRFN2 and offers molecular insight into the perturbed function of SNX27 and LRFN2 in a range of neurological conditions.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD026289 with the raw and filtered data also available in Supplementary File 1.
Article and author information
Author details
Funding
Medical Research Council (MR/L007363/1)
- Peter J Cullen
Medical Research Council (MR/P018807/1)
- Peter J Cullen
Wellcome Trust (104568/Z/14/2)
- Peter J Cullen
Lister Institute of Preventive Medicine
- Peter J Cullen
National Health and Medical Research Council (APP1136021)
- Brett M Collins
National Health and Medical Research Council (APP1099114)
- Brett M Collins
Biotechnology and Biological Sciences Research Council (BB/R00787X/1)
- Jeremy M Henley
- Kevin Wilkinson
Royal Society (RSRP\R1\211004)
- Peter J Cullen
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All animal procedures were conducted in accordance with the United Kingdom Animals Scientific Procedures Act (1986) and associated guidelines. All efforts were made to minimise suffering and number of animals used.
Copyright
© 2021, McMillan et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,935
- views
-
- 302
- downloads
-
- 11
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cell Biology
Epithelial damage leads to early reactive oxygen species (ROS) signaling, which regulates sensory neuron regeneration and tissue repair. How the initial type of tissue injury influences early damage signaling and regenerative growth of sensory axons remains unclear. Previously we reported that thermal injury triggers distinct early tissue responses in larval zebrafish. Here, we found that thermal but not mechanical injury impairs sensory axon regeneration and function. Real-time imaging revealed an immediate tissue response to thermal injury characterized by the rapid Arp2/3-dependent migration of keratinocytes, which was associated with tissue scale ROS production and sustained sensory axon damage. Isotonic treatment was sufficient to limit keratinocyte movement, spatially restrict ROS production, and rescue sensory neuron function. These results suggest that early keratinocyte dynamics regulate the spatial and temporal pattern of long-term signaling in the wound microenvironment during tissue repair.
-
- Cell Biology
Immunofluorescence localises proteins via fluorophore-labelled antibodies. However, some proteins evade detection due to antibody-accessibility issues or because they are naturally low abundant or antigen density is reduced by the imaging method. Here, we show that the fusion of the target protein to the biotin ligase TurboID and subsequent detection of biotinylation by fluorescent streptavidin offers an ‘all in one’ solution to these restrictions. For all proteins tested, the streptavidin signal was significantly stronger than an antibody signal, markedly improving the sensitivity of expansion microscopy and correlative light and electron microscopy. Importantly, proteins within phase-separated regions, such as the central channel of the nuclear pores, the nucleolus, or RNA granules, were readily detected with streptavidin, while most antibodies failed. When TurboID is used in tandem with an HA epitope tag, co-probing with streptavidin and anti-HA can map antibody-accessibility and we created such a map for the trypanosome nuclear pore. Lastly, we show that streptavidin imaging resolves dynamic, temporally, and spatially distinct sub-complexes and, in specific cases, reveals a history of dynamic protein interaction. In conclusion, streptavidin imaging has major advantages for the detection of lowly abundant or inaccessible proteins and in addition, provides information on protein interactions and biophysical environment.