Sorting nexin-27 regulates AMPA receptor trafficking through the synaptic adhesion protein LRFN2

Abstract

The endosome-associated cargo adaptor sorting nexin-27 (SNX27) is linked to various neuropathologies through sorting of integral proteins to the synaptic surface, most notably AMPA receptors. To provide a broader view of SNX27-associated pathologies we performed proteomics in rat primary neurons to identify SNX27-dependent cargoes, and identified proteins linked to excitotoxicity, epilepsy, intellectual disabilities and working memory deficits. Focusing on the synaptic adhesion molecule LRFN2, we established that SNX27 binds to LRFN2 and regulates its endosomal sorting. Furthermore, LRFN2 associates with AMPA receptors and knockdown of LRFN2 results in decreased surface AMPA receptor expression, reduced synaptic activity, and attenuated hippocampal long-term potentiation. Overall, our study provides an additional mechanism by which SNX27 can control AMPA receptor-mediated synaptic transmission and plasticity indirectly through the sorting of LRFN2 and offers molecular insight into the perturbed function of SNX27 and LRFN2 in a range of neurological conditions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD026289 with the raw and filtered data also available in Supplementary File 1.

The following data sets were generated

Article and author information

Author details

  1. Kirsty J McMillan

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    For correspondence
    kirsty.mcmillan@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  2. Paul J Banks

    School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Francesca L N Hellel

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Ruth E Carmichael

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2665-2966
  5. Thomas Clairfeuille

    Institute for Molecular Bioscience, University of Queensland, Queensland, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Ashley J Evans

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6658-2176
  7. Kate J Heesom

    Proteomics Facility, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5418-5392
  8. Philip Lewis

    Proteomics Facility, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2868-2459
  9. Brett M Collins

    Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6070-3774
  10. Zafar Bashir

    Proteomics Facility, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Jeremy M Henley

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3589-8335
  12. Kevin Wilkinson

    School of Biochemistry, University of Bristol, Bristol, United Kingdom
    For correspondence
    Kevin.Wilkinson@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8115-8592
  13. Peter J Cullen

    Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
    For correspondence
    Pete.Cullen@bristol.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9070-8349

Funding

Medical Research Council (MR/L007363/1)

  • Peter J Cullen

Medical Research Council (MR/P018807/1)

  • Peter J Cullen

Wellcome Trust (104568/Z/14/2)

  • Peter J Cullen

Lister Institute of Preventive Medicine

  • Peter J Cullen

National Health and Medical Research Council (APP1136021)

  • Brett M Collins

National Health and Medical Research Council (APP1099114)

  • Brett M Collins

Biotechnology and Biological Sciences Research Council (BB/R00787X/1)

  • Jeremy M Henley
  • Kevin Wilkinson

Royal Society (RSRP\R1\211004)

  • Peter J Cullen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were conducted in accordance with the United Kingdom Animals Scientific Procedures Act (1986) and associated guidelines. All efforts were made to minimise suffering and number of animals used.

Reviewing Editor

  1. Adam Linstedt, Carnegie Mellon University, United States

Publication history

  1. Received: May 28, 2020
  2. Accepted: June 23, 2021
  3. Accepted Manuscript published: July 12, 2021 (version 1)
  4. Version of Record published: July 21, 2021 (version 2)

Copyright

© 2021, McMillan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 924
    Page views
  • 179
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kirsty J McMillan
  2. Paul J Banks
  3. Francesca L N Hellel
  4. Ruth E Carmichael
  5. Thomas Clairfeuille
  6. Ashley J Evans
  7. Kate J Heesom
  8. Philip Lewis
  9. Brett M Collins
  10. Zafar Bashir
  11. Jeremy M Henley
  12. Kevin Wilkinson
  13. Peter J Cullen
(2021)
Sorting nexin-27 regulates AMPA receptor trafficking through the synaptic adhesion protein LRFN2
eLife 10:e59432.
https://doi.org/10.7554/eLife.59432

Further reading

    1. Cell Biology
    Tai-De Li et al.
    Research Article

    Branched actin networks are self-assembling molecular motors that move biological membranes and drive many important cellular processes, including phagocytosis, endocytosis, and pseudopod protrusion. When confronted with opposing forces, the growth rate of these networks slows and their density increases, but the stoichiometry of key components does not change. The molecular mechanisms governing this force response are not well understood, so we used single-molecule imaging and AFM cantilever deflection to measure how applied forces affect each step in branched actin network assembly. Although load forces are observed to increase the density of growing filaments, we find that they actually decrease the rate of filament nucleation due to inhibitory interactions between actin filament ends and nucleation promoting factors. The force-induced increase in network density turns out to result from an exponential drop in the rate constant that governs filament capping. The force dependence of filament capping matches that of filament elongation and can be explained by expanding Brownian Ratchet theory to cover both processes. We tested a key prediction of this expanded theory by measuring the force-dependent activity of engineered capping protein variants and found that increasing the size of the capping protein increases its sensitivity to applied forces. In summary, we find that Brownian Ratchets underlie not only the ability of growing actin filaments to generate force but also the ability of branched actin networks to adapt their architecture to changing loads.

    1. Cell Biology
    2. Immunology and Inflammation
    Ekaterini Maria Lyras et al.
    Research Article

    The tongue is a unique muscular organ situated in the oral cavity where it is involved in taste sensation, mastication, and articulation. As a barrier organ, which is constantly exposed to environmental pathogens, the tongue is expected to host an immune cell network ensuring local immune defence. However, the composition and the transcriptional landscape of the tongue immune system are currently not completely defined. Here, we characterised the tissue-resident immune compartment of the murine tongue during development, health and disease, combining single-cell RNA-sequencing with in situ immunophenotyping. We identified distinct local immune cell populations and described two specific subsets of tongue-resident macrophages occupying discrete anatomical niches. Cx3cr1+ macrophages were located specifically in the highly innervated lamina propria beneath the tongue epidermis and at times in close proximity to fungiform papillae. Folr2+ macrophages were detected in deeper muscular tissue. In silico analysis indicated that the two macrophage subsets originate from a common proliferative precursor during early postnatal development and responded differently to systemic LPS in vivo. Our description of the under-investigated tongue immune system sets a starting point to facilitate research on tongue immune-physiology and pathology including cancer and taste disorders.