High-resolution transcriptional and morphogenetic profiling of cells from micropatterned human ESC gastruloid cultures

  1. Kyaw Thu Minn
  2. Yuheng C Fu
  3. Shenghua He
  4. Sabine Dietmann
  5. Steven C George
  6. Mark A Anastasio
  7. Samantha A Morris  Is a corresponding author
  8. Lilianna Solnica-Krezel  Is a corresponding author
  1. Washington University in St Louis, United States
  2. Washington University School of Medicine, United States
  3. University of California, Davis, United States
  4. University of Illinois, Urbana-Champaign, United States

Abstract

During mammalian gastrulation, germ layers arise and are shaped into the body plan while extraembryonic layers sustain the embryo. Human embryonic stem cells, cultured with BMP4 on extracellular matrix micro-discs, reproducibly differentiate into gastruloids, expressing markers of germ layers and extraembryonic cells in radial arrangement. Using single-cell RNA sequencing and cross-species comparisons with mouse, cynomolgus monkey gastrulae, and post-implantation human embryos, we reveal that gastruloids contain cells transcriptionally similar to epiblast, ectoderm, mesoderm, endoderm, primordial germ cells, trophectoderm, and amnion. Upon gastruloid dissociation, single cells reseeded onto micro-discs were motile and aggregated with the same but segregated from distinct cell types. Ectodermal cells segregated from endodermal and extraembryonic but mixed with mesodermal cells. Our work demonstrates that the gastruloid system models primate-specific features of embryogenesis, and that gastruloid cells exhibit evolutionarily conserved sorting behaviors. This work generates a resource for transcriptomes of human extraembryonic and embryonic germ layers differentiated in a stereotyped arrangement.

Data availability

Sequencing data have been deposited in GEO under accession code GSE144897.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Kyaw Thu Minn

    Department of Biomedical Engineering, Washington University in St Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  2. Yuheng C Fu

    Developmental Biology, and Genetics, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8037-6398
  3. Shenghua He

    Department of Computer Science & Engineering, Washington University in St Louis, St Louis, United States
    Competing interests
    No competing interests declared.
  4. Sabine Dietmann

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  5. Steven C George

    Department of Biomedical Engineering, University of California, Davis, Davis, United States
    Competing interests
    No competing interests declared.
  6. Mark A Anastasio

    Department of Bioengineering, University of Illinois, Urbana-Champaign, Urbana-Champaign, United States
    Competing interests
    No competing interests declared.
  7. Samantha A Morris

    Developmental Biology, and Genetics, Washington University School of Medicine, St Louis, United States
    For correspondence
    s.morris@wustl.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8561-4340
  8. Lilianna Solnica-Krezel

    Department of Developmental Biology, Washington University School of Medicine, St Louis, United States
    For correspondence
    solnical@wustl.edu
    Competing interests
    Lilianna Solnica-Krezel, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0983-221X

Funding

Children's Discovery Institute

  • Lilianna Solnica-Krezel

Washington University School of Medicine in St. Louis (Discretionary funds)

  • Lilianna Solnica-Krezel

Vallee Foundation (Vallee Scholar Award)

  • Samantha A Morris

Paul G. Allen Frontiers Group (Allen Distinguished Investigator Award)

  • Samantha A Morris

Alfred P. Sloan Foundation (Sloan Research Fellowship)

  • Samantha A Morris

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anita Bhattacharyya, University of Wisconsin, Madison, United States

Version history

  1. Received: May 28, 2020
  2. Accepted: November 17, 2020
  3. Accepted Manuscript published: November 18, 2020 (version 1)
  4. Version of Record published: December 10, 2020 (version 2)

Copyright

© 2020, Minn et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,137
    views
  • 732
    downloads
  • 69
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kyaw Thu Minn
  2. Yuheng C Fu
  3. Shenghua He
  4. Sabine Dietmann
  5. Steven C George
  6. Mark A Anastasio
  7. Samantha A Morris
  8. Lilianna Solnica-Krezel
(2020)
High-resolution transcriptional and morphogenetic profiling of cells from micropatterned human ESC gastruloid cultures
eLife 9:e59445.
https://doi.org/10.7554/eLife.59445

Share this article

https://doi.org/10.7554/eLife.59445

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.