Patient-specific genomics and cross-species functional analysis implicate LRP2 in hypoplastic left heart syndrome
Abstract
Congenital heart diseases (CHDs), including hypoplastic left heart syndrome (HLHS), are genetically complex and poorly understood. Here, a multi-disciplinary platform was established to functionally evaluate novel CHD gene candidates, based on whole genome and iPSC RNA sequencing of a HLHS family-trio. Filtering for rare variants and altered expression in proband iPSCs prioritized 10 candidates. siRNA/RNAi-mediated knockdown in generic human iPSC-derived cardiomyocytes (hiPSC-CM) and in developing Drosophila and zebrafish hearts revealed that LDL receptor-related protein LRP2 is required for cardiomyocyte proliferation and differentiation. Consistent with hypoplastic heart defects, compared to patents the proband's iPSC-CMs exhibited reduced proliferation. Interestingly, rare, predicted-damaging LRP2 variants were enriched in a HLHS cohort; however, understanding their contribution to HLHS requires further investigation. Collectively, we have established a multi-species high-throughput platform to rapidly evaluate candidate genes and their interactions during heart development, which are crucial first steps towards deciphering oligogenic underpinnings of CHDs, including maladaptive left hearts.
Data availability
Sequencing data are deposited in the NCBI Sequence Read Archive (SRA) database with accession numbers: SRS1417684 (proband iPSCs), SRS1417685 (paternal iPSCs), SRS1417686 (maternal iPSCs), SRS1417695 (proband d25 differentiated cells), SRS1417696 (paternal d25 differentiated cells), SRS1417714 (maternal d25 differentiated cells)
Article and author information
Author details
Funding
Todd and Karen Wanek Family Program for Hypoplastic Left Heart Syndrome, Mayo Clinic Foundation, Rochester, MN (SAN-233970)
- Alexandre R Colas
- Rolf Bodmer
National Institutes of Health (HL054732)
- Rolf Bodmer
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: SBP has retained the services of a veterinarian who is a diplomat of the American College of Laboratory Animal Medicine. Close contact with Animal Facility personnel is maintained through telephone calls and on-campus visits once a week. This person is a member of the Institute's Animal Care and Use Committee (IACUC)and attends monthly meetings. This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to the Institute's Animal Care and Use Program, which is accredited by AAALAC International, and a Multiple Project Assurance A3053-1 is on file in the OLAW, DHHS. The protocol was approved by SBP IACUC (Permit Number: 19-087). Animals are euthanized after filming hearts by an overdose of anesthetic (3-aminobenzoic acid ethyl ester (MS-222) at 250-300 mg/L.
Human subjects: Written informed consent was obtained for the index family and an HLHS cohort, under a research protocol approved by the Mayo Clinic Institutional Review Board (11-000114 "Genetic Investigations in Hypoplastic Left Heart Syndrome").
Copyright
© 2020, Theis et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,343
- views
-
- 307
- downloads
-
- 30
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Genetics and Genomics
O-GlcNAcylation is an essential intracellular protein modification mediated by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Recently, missense mutations in OGT have been linked to intellectual disability, indicating that this modification is important for the development and functioning of the nervous system. However, the processes that are most sensitive to perturbations in O-GlcNAcylation remain to be identified. Here, we uncover quantifiable phenotypes in the fruit fly Drosophila melanogaster carrying a patient-derived OGT mutation in the catalytic domain. Hypo-O-GlcNAcylation leads to defects in synaptogenesis and reduced sleep stability. Both these phenotypes can be partially rescued by genetically or chemically targeting OGA, suggesting that a balance of OGT/OGA activity is required for normal neuronal development and function.
-
- Evolutionary Biology
- Genetics and Genomics
Evolutionary arms races can arise at the contact surfaces between host and viral proteins, producing dynamic spaces in which genetic variants are continually pursued. However, the sampling of genetic variation must be balanced with the need to maintain protein function. A striking case is given by protein kinase R (PKR), a member of the mammalian innate immune system. PKR detects viral replication within the host cell and halts protein synthesis to prevent viral replication by phosphorylating eIF2α, a component of the translation initiation machinery. PKR is targeted by many viral antagonists, including poxvirus pseudosubstrate antagonists that mimic the natural substrate, eIF2α, and inhibit PKR activity. Remarkably, PKR has several rapidly evolving residues at this interface, suggesting it is engaging in an evolutionary arms race, despite the surface’s critical role in phosphorylating eIF2α. To systematically explore the evolutionary opportunities available at this dynamic interface, we generated and characterized a library of 426 SNP-accessible nonsynonymous variants of human PKR for their ability to escape inhibition by the model pseudosubstrate inhibitor K3, encoded by the vaccinia virus gene K3L. We identified key sites in the PKR kinase domain that harbor K3-resistant variants, as well as critical sites where variation leads to loss of function. We find K3-resistant variants are readily available throughout the interface and are enriched at sites under positive selection. Moreover, variants beneficial against K3 were also beneficial against an enhanced variant of K3, indicating resilience to viral adaptation. Overall, we find that the eIF2α-binding surface of PKR is highly malleable, potentiating its evolutionary ability to combat viral inhibition.