Health benefits attributed to 17α-estradiol, a lifespan-extending compound, are mediated through estrogen receptor α

  1. Shivani N Mann
  2. Niran Hadad
  3. Molly Nelson Holte
  4. Alicia R Rothman
  5. Roshini Sathiaseelan
  6. Samim Ali Mondal
  7. Martin-Paul Agbaga
  8. Archana Unnikrishnan
  9. Malayannan Subramaniam
  10. John Hawse
  11. Derek M Huffman
  12. Willard M Freeman
  13. Michael B Stout  Is a corresponding author
  1. OUHSC, United States
  2. The Jackson Laboratory, United States
  3. Mayo Clinic College of Medicine and Science, United States
  4. Mayo Clinic, United States
  5. Albert Einstein College of Medicine, United States
  6. Oklahoma Medical Research Foundation, United States

Abstract

Metabolic dysfunction underlies several chronic diseases, many of which are exacerbated by obesity. Dietary interventions can reverse metabolic declines and slow aging, although compliance issues remain paramount. 17α-estradiol treatment improves metabolic parameters and slows aging in male mice. The mechanisms by which 17α-estradiol elicits these benefits remain unresolved. Herein, we show that 17α-estradiol elicits similar genomic binding and transcriptional activation through estrogen receptor α (ERα) to that of 17β-estradiol. In addition, we show that the ablation of ERα completely attenuates the beneficial metabolic effects of 17α-E2 in male mice. Our findings suggest that 17α-E2 may act through the liver and hypothalamus to improve metabolic parameters in male mice. Lastly, we also determined that 17α-E2 improves metabolic parameters in male rats, thereby proving that the beneficial effects of 17α-E2 are not limited to mice. Collectively, these studies suggest ERα may be a drug target for mitigating chronic diseases in male mammals.

Data availability

Sequencing data has been deposited in GEO under accession code GSE151039

The following data sets were generated

Article and author information

Author details

  1. Shivani N Mann

    Nutritional Sciences, OUHSC, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Niran Hadad

    Genomics, The Jackson Laboratory, Bar Harbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Molly Nelson Holte

    Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alicia R Rothman

    Nutritional Sciences, OUHSC, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Roshini Sathiaseelan

    Nutritional Sciences, OUHSC, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Samim Ali Mondal

    Nutritional Sciences, OUHSC, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Martin-Paul Agbaga

    Cell Biology, OUHSC, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Archana Unnikrishnan

    Biochemistry, OUHSC, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Malayannan Subramaniam

    Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. John Hawse

    Biochemistry and Molecular Biology, Mayo Clinic, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Derek M Huffman

    Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Willard M Freeman

    Genes & Human Disease, Oklahoma Medical Research Foundation, Oklahoma City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7027-999X
  13. Michael B Stout

    Nutritional Sciences, OUHSC, Oklahoma City, United States
    For correspondence
    michael-stout@ouhsc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9996-9123

Funding

National Institutes of Health (R00 AG51661,R01 EY030513,T32 AG052363,P30 EY012190,P30 AG038072)

  • Shivani N Mann
  • Martin-Paul Agbaga
  • Derek M Huffman
  • Michael B Stout

Harold Hamm Diabetes Center (Pilot Research Funding)

  • Shivani N Mann
  • Michael B Stout

National Institutes of Health (R01 AG069742)

  • Michael B Stout

National Institutes of Health (R01 AG059430)

  • Willard M Freeman

Veterans Affairs Oklahoma City (I01BX003906)

  • Willard M Freeman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#19-063-SEAHI) of the University of Oklahoma Health Science Center.

Copyright

© 2020, Mann et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,780
    views
  • 370
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shivani N Mann
  2. Niran Hadad
  3. Molly Nelson Holte
  4. Alicia R Rothman
  5. Roshini Sathiaseelan
  6. Samim Ali Mondal
  7. Martin-Paul Agbaga
  8. Archana Unnikrishnan
  9. Malayannan Subramaniam
  10. John Hawse
  11. Derek M Huffman
  12. Willard M Freeman
  13. Michael B Stout
(2020)
Health benefits attributed to 17α-estradiol, a lifespan-extending compound, are mediated through estrogen receptor α
eLife 9:e59616.
https://doi.org/10.7554/eLife.59616

Share this article

https://doi.org/10.7554/eLife.59616

Further reading

    1. Computational and Systems Biology
    2. Medicine
    Hong Yang, Cheng Zhang ... Adil Mardinoglu
    Research Article

    Excessive consumption of sucrose, in the form of sugar-sweetened beverages, has been implicated in the pathogenesis of metabolic dysfunction‐associated fatty liver disease (MAFLD) and other related metabolic syndromes. The c-Jun N-terminal kinase (JNK) pathway plays a crucial role in response to dietary stressors, and it was demonstrated that the inhibition of the JNK pathway could potentially be used in the treatment of MAFLD. However, the intricate mechanisms underlying these interventions remain incompletely understood given their multifaceted effects across multiple tissues. In this study, we challenged rats with sucrose-sweetened water and investigated the potential effects of JNK inhibition by employing network analysis based on the transcriptome profiling obtained from hepatic and extrahepatic tissues, including visceral white adipose tissue, skeletal muscle, and brain. Our data demonstrate that JNK inhibition by JNK-IN-5A effectively reduces the circulating triglyceride accumulation and inflammation in rats subjected to sucrose consumption. Coexpression analysis and genome-scale metabolic modeling reveal that sucrose overconsumption primarily induces transcriptional dysfunction related to fatty acid and oxidative metabolism in the liver and adipose tissues, which are largely rectified after JNK inhibition at a clinically relevant dose. Skeletal muscle exhibited minimal transcriptional changes to sucrose overconsumption but underwent substantial metabolic adaptation following the JNK inhibition. Overall, our data provides novel insights into the molecular basis by which JNK inhibition exerts its metabolic effect in the metabolically active tissues. Furthermore, our findings underpin the critical role of extrahepatic metabolism in the development of diet-induced steatosis, offering valuable guidance for future studies focused on JNK-targeting for effective treatment of MAFLD.

    1. Medicine
    2. Neuroscience
    Hyeonyoung Min, Yale Y Yang, Yunlei Yang
    Research Article

    It has been well documented that cold is an enhancer of lipid metabolism in peripheral tissues, yet its effect on central nervous system lipid dynamics is underexplored. It is well recognized that cold acclimations enhance adipocyte functions, including white adipose tissue lipid lipolysis and beiging, and brown adipose tissue thermogenesis in mammals. However, it remains unclear whether and how lipid metabolism in the brain is also under the control of ambient temperature. Here, we show that cold exposure predominantly increases the expressions of the lipid lipolysis genes and proteins within the paraventricular nucleus of the hypothalamus (PVH) in male mice. Mechanistically, by using innovatively combined brain-region selective pharmacology and in vivo time-lapse photometry monitoring of lipid metabolism, we find that cold activates cells within the PVH and pharmacological inactivation of cells blunts cold-induced effects on lipid peroxidation, accumulation of lipid droplets, and lipid lipolysis in the PVH. Together, these findings suggest that PVH lipid metabolism is cold sensitive and integral to cold-induced broader regulatory responses.