Alcohol drinking alters stress response to predator odor via BNST kappa opioid receptor signaling in male mice
Abstract
Maladaptive responses to stress are a hallmark of alcohol use disorder, but the mechanisms that underlie this are not well characterized. Here we show that kappa opioid receptor signaling in the bed nucleus of the stria terminalis (BNST) is a critical molecular substrate underlying abnormal stress responses to predator odor following heavy alcohol drinking. Exposure to predator odor during protracted withdrawal from intermittent alcohol drinking resulted in enhanced prefrontal cortex (PFC)-driven excitation of prodynorphin-containing neurons in the BNST. Furthermore, deletion of prodynorphin in the BNST and chemogenetic inhibition of the PFC-BNST pathway restored abnormal responses to predator odor in alcohol-exposed mice. These findings suggest that increased corticolimbic drive may promote abnormal stress behavioral responses to predator odor during protracted withdrawal. Various nodes of this PFC-BNST dynorphin-related circuit may serve as potential targets for potential therapeutic mediation as well as biomarkers of negative responses to stress following heavy alcohol drinking.
Data availability
All data are available in the main text or the supplementary materials.
Article and author information
Author details
Funding
National Institute on Alcohol Abuse and Alcoholism (K99AA027576)
- Lara S Hwa
National Institute on Alcohol Abuse and Alcoholism (T32AA007573)
- Meghan E Flanigan
National Institute on Alcohol Abuse and Alcoholism (F32AA026485)
- Melanie M Pina
National Institute on Alcohol Abuse and Alcoholism (F31AA027129)
- Waylin Yu
National Institute on Alcohol Abuse and Alcoholism (R01AA019454)
- Thomas L Kash
National Institute on Alcohol Abuse and Alcoholism (U01AA020911)
- Thomas L Kash
National Institute on Alcohol Abuse and Alcoholism (R01AA025582)
- Thomas L Kash
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: The UNC School of Medicine Institutional Animal Care and Use Committee approved all experiments (Protocol # 19-078). Procedures were conducted in accordance with the NIH Guidelines for the Care and Use of Laboratory Animals.
Copyright
© 2020, Hwa et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,297
- views
-
- 436
- downloads
-
- 11
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
One of the most fundamental laws of physics is the principle of least action. Motivated by its predictive power, we introduce a neuronal least-action principle for cortical processing of sensory streams to produce appropriate behavioral outputs in real time. The principle postulates that the voltage dynamics of cortical pyramidal neurons prospectively minimizes the local somato-dendritic mismatch error within individual neurons. For output neurons, the principle implies minimizing an instantaneous behavioral error. For deep network neurons, it implies the prospective firing to overcome integration delays and correct for possible output errors right in time. The neuron-specific errors are extracted in the apical dendrites of pyramidal neurons through a cortical microcircuit that tries to explain away the feedback from the periphery, and correct the trajectory on the fly. Any motor output is in a moving equilibrium with the sensory input and the motor feedback during the ongoing sensory-motor transform. Online synaptic plasticity reduces the somatodendritic mismatch error within each cortical neuron and performs gradient descent on the output cost at any moment in time. The neuronal least-action principle offers an axiomatic framework to derive local neuronal and synaptic laws for global real-time computation and learning in the brain.