1. Neuroscience
Download icon

Alcohol drinking alters stress response to predator odor via BNST kappa opioid receptor signaling in male mice

Research Article
  • Cited 5
  • Views 2,457
  • Annotations
Cite this article as: eLife 2020;9:e59709 doi: 10.7554/eLife.59709

Abstract

Maladaptive responses to stress are a hallmark of alcohol use disorder, but the mechanisms that underlie this are not well characterized. Here we show that kappa opioid receptor signaling in the bed nucleus of the stria terminalis (BNST) is a critical molecular substrate underlying abnormal stress responses to predator odor following heavy alcohol drinking. Exposure to predator odor during protracted withdrawal from intermittent alcohol drinking resulted in enhanced prefrontal cortex (PFC)-driven excitation of prodynorphin-containing neurons in the BNST. Furthermore, deletion of prodynorphin in the BNST and chemogenetic inhibition of the PFC-BNST pathway restored abnormal responses to predator odor in alcohol-exposed mice. These findings suggest that increased corticolimbic drive may promote abnormal stress behavioral responses to predator odor during protracted withdrawal. Various nodes of this PFC-BNST dynorphin-related circuit may serve as potential targets for potential therapeutic mediation as well as biomarkers of negative responses to stress following heavy alcohol drinking.

Data availability

All data are available in the main text or the supplementary materials.

Article and author information

Author details

  1. Lara S Hwa

    Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5197-6201
  2. Sofia Neira

    Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Meghan E Flanigan

    Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3185-7459
  4. Christina M Stanhope

    Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Melanie M Pina

    Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5638-0474
  6. Dipanwita Pati

    Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6303-4871
  7. Olivia J Hon

    Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Waylin Yu

    Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Emily Kokush

    Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Rachel Calloway

    Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Kristen Boyt

    Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Thomas L Kash

    Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, United States
    For correspondence
    tkash@email.unc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4747-4495

Funding

National Institute on Alcohol Abuse and Alcoholism (K99AA027576)

  • Lara S Hwa

National Institute on Alcohol Abuse and Alcoholism (T32AA007573)

  • Meghan E Flanigan

National Institute on Alcohol Abuse and Alcoholism (F32AA026485)

  • Melanie M Pina

National Institute on Alcohol Abuse and Alcoholism (F31AA027129)

  • Waylin Yu

National Institute on Alcohol Abuse and Alcoholism (R01AA019454)

  • Thomas L Kash

National Institute on Alcohol Abuse and Alcoholism (U01AA020911)

  • Thomas L Kash

National Institute on Alcohol Abuse and Alcoholism (R01AA025582)

  • Thomas L Kash

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The UNC School of Medicine Institutional Animal Care and Use Committee approved all experiments (Protocol # 19-078). Procedures were conducted in accordance with the NIH Guidelines for the Care and Use of Laboratory Animals.

Reviewing Editor

  1. Matthew N Hill, University of Calgary, Canada

Publication history

  1. Received: June 5, 2020
  2. Accepted: July 20, 2020
  3. Accepted Manuscript published: July 21, 2020 (version 1)
  4. Version of Record published: August 20, 2020 (version 2)

Copyright

© 2020, Hwa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,457
    Page views
  • 318
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Zhengchao Xu et al.
    Tools and Resources Updated

    The dorsal raphe nucleus (DR) and median raphe nucleus (MR) contain populations of glutamatergic and GABAergic neurons that regulate diverse behavioral functions. However, their whole-brain input-output circuits remain incompletely elucidated. We used viral tracing combined with fluorescence micro-optical sectioning tomography to generate a comprehensive whole-brain atlas of inputs and outputs of glutamatergic and GABAergic neurons in the DR and MR. We found that these neurons received inputs from similar upstream brain regions. The glutamatergic and GABAergic neurons in the same raphe nucleus had divergent projection patterns with differences in critical brain regions. Specifically, MR glutamatergic neurons projected to the lateral habenula through multiple pathways. Correlation and cluster analysis revealed that glutamatergic and GABAergic neurons in the same raphe nucleus received heterogeneous inputs and sent different collateral projections. This connectivity atlas further elucidates the anatomical architecture of the raphe nuclei, which could facilitate better understanding of their behavioral functions.