Activation of a neural stem cell transcriptional program in parenchymal astrocytes

  1. Jens P Magnusson
  2. Margherita Zamboni
  3. Giuseppe Santopolo
  4. Jeff E Mold
  5. Mauricio Barrientos-Somarribas
  6. Carlos Talavera-Lopez
  7. Björn Andersson
  8. Jonas Frisén  Is a corresponding author
  1. Stanford University, United States
  2. Karolinska Institutet, Sweden
  3. Francis Crick Institute, United Kingdom
  4. Karolinska Institute, Sweden

Abstract

Adult neural stem cells, located in discrete brain regions, generate new neurons throughout life. These stem cells are specialized astrocytes, but astrocytes in other brain regions do not generate neurons under physiological conditions. After stroke, however, striatal astrocytes undergo neurogenesis in mice, triggered by decreased Notch signaling. We used single-cell RNA sequencing to characterize neurogenesis by Notch-depleted striatal astrocytes in vivo. Striatal astrocytes were located upstream of neural stem cells in the neuronal lineage. As astrocytes initiated neurogenesis, they became transcriptionally very similar to subventricular zone stem cells, progressing through a near-identical neurogenic program. Surprisingly, in the non-neurogenic cortex, Notch-depleted astrocytes also initiated neurogenesis. Yet, these cortical astrocytes, and many striatal ones, stalled before entering transit-amplifying divisions. Infusion of epidermal growth factor enabled stalled striatal astrocytes to resume neurogenesis. We conclude that parenchymal astrocytes are latent neural stem cells and that targeted interventions can guide them through their neuronal differentiation.

Data availability

The Cx30-CreER dataset (fastq files and processed expression matrix) has been deposited in ArrayExpress (accession E-MTAB-9268). The AAV-Cre dataset has been deposited in the Gene Expression Omnibus (GEO; accession GSE153916).SmartSeq2 dataset (ArrayExpress)http://www.ebi.ac.uk/arrayexpress/help/how_to_search_private_data.htmlUsername: Reviewer_E-MTAB-9268Password: hqhgiiqx10X dataset (GEO)To review GEO accession GSE153916:Go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153916Enter token mzoxeoigpranfub into the box

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jens P Magnusson

    Bioengineering Department, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3928-8959
  2. Margherita Zamboni

    Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Giuseppe Santopolo

    Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeff E Mold

    Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Mauricio Barrientos-Somarribas

    Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Carlos Talavera-Lopez

    Francis Crick Institute, Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Björn Andersson

    Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Jonas Frisén

    Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
    For correspondence
    jonas.frisen@ki.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5819-458X

Funding

Svenska Forskningsrådet Formas

  • Jonas Frisén

Cancerfonden

  • Jonas Frisén

Stiftelsen för Strategisk Forskning

  • Jonas Frisén

H2020 European Research Council

  • Jonas Frisén

Knut och Alice Wallenbergs Stiftelse

  • Jonas Frisén

Torsten Söderbergs Stiftelse

  • Jonas Frisén

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experimental procedures were approved by the Stockholms Norra Djurförsöksetiska Nämnd (Permit reference numbers N571-11 and N155-16)

Copyright

© 2020, Magnusson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,436
    views
  • 853
    downloads
  • 57
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jens P Magnusson
  2. Margherita Zamboni
  3. Giuseppe Santopolo
  4. Jeff E Mold
  5. Mauricio Barrientos-Somarribas
  6. Carlos Talavera-Lopez
  7. Björn Andersson
  8. Jonas Frisén
(2020)
Activation of a neural stem cell transcriptional program in parenchymal astrocytes
eLife 9:e59733.
https://doi.org/10.7554/eLife.59733

Share this article

https://doi.org/10.7554/eLife.59733

Further reading

    1. Neuroscience
    John P Liska, Declan P Rowley ... Alexander C Huk
    Research Article

    When mice run, activity in their primary visual cortex (V1) is strongly modulated. This observation has altered conceptions of a brain region assumed to be a passive image processor. Extensive work has followed to dissect the circuits and functions of running-correlated modulation. However, it remains unclear whether visual processing in primates might similarly change during locomotion. We therefore measured V1 activity in marmosets while they viewed stimuli on a treadmill. In contrast to mouse, running-correlated modulations of marmoset V1 were small and tended to be slightly suppressive. Population-level analyses revealed trial-to-trial fluctuations of shared gain across V1 in both species, but while strongly correlated with running in mice, gain modulations were smaller and more often negatively correlated with running in marmosets. Thus, population-wide fluctuations of V1 may reflect a common feature of mammalian visual cortical function, but important quantitative differences point to distinct consequences for the relation between vision and action in primates versus rodents.

    1. Neuroscience
    Mitchell P Morton, Sachira Denagamage ... Anirvan S Nandy
    Research Article

    Identical stimuli can be perceived or go unnoticed across successive presentations, producing divergent behavioral outcomes despite similarities in sensory input. We sought to understand how fluctuations in behavioral state and cortical layer and cell class-specific neural activity underlie this perceptual variability. We analyzed physiological measurements of state and laminar electrophysiological activity in visual area V4 while monkeys were rewarded for correctly reporting a stimulus change at perceptual threshold. Hit trials were characterized by a behavioral state with heightened arousal, greater eye position stability, and enhanced decoding performance of stimulus identity from neural activity. Target stimuli evoked stronger responses in V4 in hit trials, and excitatory neurons in the superficial layers, the primary feed-forward output of the cortical column, exhibited lower variability. Feed-forward interlaminar population correlations were stronger on hits. Hit trials were further characterized by greater synchrony between the output layers of the cortex during spontaneous activity, while the stimulus-evoked period showed elevated synchrony in the feed-forward pathway. Taken together, these results suggest that a state of elevated arousal and stable retinal images allow enhanced processing of sensory stimuli, which contributes to hits at perceptual threshold.