1. Neuroscience
  2. Stem Cells and Regenerative Medicine
Download icon

Activation of a neural stem cell transcriptional program in parenchymal astrocytes

  1. Jens P Magnusson
  2. Margherita Zamboni
  3. Giuseppe Santopolo
  4. Jeff E Mold
  5. Mauricio Barrientos-Somarribas
  6. Carlos Talavera-Lopez
  7. Björn Andersson
  8. Jonas Frisén  Is a corresponding author
  1. Stanford University, United States
  2. Karolinska Institutet, Sweden
  3. Francis Crick Institute, United Kingdom
  4. Karolinska Institute, Sweden
Research Article
  • Cited 1
  • Views 2,366
  • Annotations
Cite this article as: eLife 2020;9:e59733 doi: 10.7554/eLife.59733

Abstract

Adult neural stem cells, located in discrete brain regions, generate new neurons throughout life. These stem cells are specialized astrocytes, but astrocytes in other brain regions do not generate neurons under physiological conditions. After stroke, however, striatal astrocytes undergo neurogenesis in mice, triggered by decreased Notch signaling. We used single-cell RNA sequencing to characterize neurogenesis by Notch-depleted striatal astrocytes in vivo. Striatal astrocytes were located upstream of neural stem cells in the neuronal lineage. As astrocytes initiated neurogenesis, they became transcriptionally very similar to subventricular zone stem cells, progressing through a near-identical neurogenic program. Surprisingly, in the non-neurogenic cortex, Notch-depleted astrocytes also initiated neurogenesis. Yet, these cortical astrocytes, and many striatal ones, stalled before entering transit-amplifying divisions. Infusion of epidermal growth factor enabled stalled striatal astrocytes to resume neurogenesis. We conclude that parenchymal astrocytes are latent neural stem cells and that targeted interventions can guide them through their neuronal differentiation.

Article and author information

Author details

  1. Jens P Magnusson

    Bioengineering Department, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3928-8959
  2. Margherita Zamboni

    Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Giuseppe Santopolo

    Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeff E Mold

    Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Mauricio Barrientos-Somarribas

    Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Carlos Talavera-Lopez

    Francis Crick Institute, Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Björn Andersson

    Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Jonas Frisén

    Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
    For correspondence
    jonas.frisen@ki.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5819-458X

Funding

Svenska Forskningsrådet Formas

  • Jonas Frisén

Cancerfonden

  • Jonas Frisén

Stiftelsen för Strategisk Forskning

  • Jonas Frisén

H2020 European Research Council

  • Jonas Frisén

Knut och Alice Wallenbergs Stiftelse

  • Jonas Frisén

Torsten Söderbergs Stiftelse

  • Jonas Frisén

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experimental procedures were approved by the Stockholms Norra Djurförsöksetiska Nämnd (Permit reference numbers N571-11 and N155-16)

Reviewing Editor

  1. Joseph G Gleeson, Howard Hughes Medical Institute, The Rockefeller University, United States

Publication history

  1. Received: June 5, 2020
  2. Accepted: July 31, 2020
  3. Accepted Manuscript published: August 3, 2020 (version 1)
  4. Version of Record published: August 20, 2020 (version 2)

Copyright

© 2020, Magnusson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,366
    Page views
  • 364
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Sue Ann Koay et al.
    Research Article Updated

    How does the brain internally represent a sequence of sensory information that jointly drives a decision-making behavior? Studies of perceptual decision-making have often assumed that sensory cortices provide noisy but otherwise veridical sensory inputs to downstream processes that accumulate and drive decisions. However, sensory processing in even the earliest sensory cortices can be systematically modified by various external and internal contexts. We recorded from neuronal populations across posterior cortex as mice performed a navigational decision-making task based on accumulating randomly timed pulses of visual evidence. Even in V1, only a small fraction of active neurons had sensory-like responses time-locked to each pulse. Here, we focus on how these ‘cue-locked’ neurons exhibited a variety of amplitude modulations from sensory to cognitive, notably by choice and accumulated evidence. These task-related modulations affected a large fraction of cue-locked neurons across posterior cortex, suggesting that future models of behavior should account for such influences.

    1. Neuroscience
    María Fernanda López-Gutiérrez et al.
    Research Article

    Previous studies have related pair bonding in Microtus ochrogaster, the prairie vole, with plastic changes in several brain regions. However, the interactions between these socially-relevant regions have yet to be described. In this study, we used resting state magnetic resonance imaging to explore bonding behaviors and functional connectivity of brain regions previously associated with pair bonding. Thirty-two male and female prairie voles were scanned at baseline, 24h and 2 weeks after the onset of cohabitation By using network based statistics, we identified that the functional connectivity of a cortico-striatal network predicted the onset of affiliative behavior, while another predicted the amount of social interaction during a partner preference test. Furthermore, a network with significant changes in time was revealed, also showing associations with the level of partner preference. Overall, our findings revealed the association between network-level functional connectivity changes and social bonding.