Activation of a neural stem cell transcriptional program in parenchymal astrocytes

  1. Jens P Magnusson
  2. Margherita Zamboni
  3. Giuseppe Santopolo
  4. Jeff E Mold
  5. Mauricio Barrientos-Somarribas
  6. Carlos Talavera-Lopez
  7. Björn Andersson
  8. Jonas Frisén  Is a corresponding author
  1. Stanford University, United States
  2. Karolinska Institutet, Sweden
  3. Francis Crick Institute, United Kingdom
  4. Karolinska Institute, Sweden

Abstract

Adult neural stem cells, located in discrete brain regions, generate new neurons throughout life. These stem cells are specialized astrocytes, but astrocytes in other brain regions do not generate neurons under physiological conditions. After stroke, however, striatal astrocytes undergo neurogenesis in mice, triggered by decreased Notch signaling. We used single-cell RNA sequencing to characterize neurogenesis by Notch-depleted striatal astrocytes in vivo. Striatal astrocytes were located upstream of neural stem cells in the neuronal lineage. As astrocytes initiated neurogenesis, they became transcriptionally very similar to subventricular zone stem cells, progressing through a near-identical neurogenic program. Surprisingly, in the non-neurogenic cortex, Notch-depleted astrocytes also initiated neurogenesis. Yet, these cortical astrocytes, and many striatal ones, stalled before entering transit-amplifying divisions. Infusion of epidermal growth factor enabled stalled striatal astrocytes to resume neurogenesis. We conclude that parenchymal astrocytes are latent neural stem cells and that targeted interventions can guide them through their neuronal differentiation.

Data availability

The Cx30-CreER dataset (fastq files and processed expression matrix) has been deposited in ArrayExpress (accession E-MTAB-9268). The AAV-Cre dataset has been deposited in the Gene Expression Omnibus (GEO; accession GSE153916).SmartSeq2 dataset (ArrayExpress)http://www.ebi.ac.uk/arrayexpress/help/how_to_search_private_data.htmlUsername: Reviewer_E-MTAB-9268Password: hqhgiiqx10X dataset (GEO)To review GEO accession GSE153916:Go to https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153916Enter token mzoxeoigpranfub into the box

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Jens P Magnusson

    Bioengineering Department, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3928-8959
  2. Margherita Zamboni

    Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  3. Giuseppe Santopolo

    Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  4. Jeff E Mold

    Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  5. Mauricio Barrientos-Somarribas

    Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  6. Carlos Talavera-Lopez

    Francis Crick Institute, Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Björn Andersson

    Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
    Competing interests
    The authors declare that no competing interests exist.
  8. Jonas Frisén

    Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
    For correspondence
    jonas.frisen@ki.se
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5819-458X

Funding

Svenska Forskningsrådet Formas

  • Jonas Frisén

Cancerfonden

  • Jonas Frisén

Stiftelsen för Strategisk Forskning

  • Jonas Frisén

H2020 European Research Council

  • Jonas Frisén

Knut och Alice Wallenbergs Stiftelse

  • Jonas Frisén

Torsten Söderbergs Stiftelse

  • Jonas Frisén

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experimental procedures were approved by the Stockholms Norra Djurförsöksetiska Nämnd (Permit reference numbers N571-11 and N155-16)

Copyright

© 2020, Magnusson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,484
    views
  • 860
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jens P Magnusson
  2. Margherita Zamboni
  3. Giuseppe Santopolo
  4. Jeff E Mold
  5. Mauricio Barrientos-Somarribas
  6. Carlos Talavera-Lopez
  7. Björn Andersson
  8. Jonas Frisén
(2020)
Activation of a neural stem cell transcriptional program in parenchymal astrocytes
eLife 9:e59733.
https://doi.org/10.7554/eLife.59733

Share this article

https://doi.org/10.7554/eLife.59733

Further reading

    1. Neuroscience
    Eleni Hackwell, Sharon R Ladyman ... David R Grattan
    Research Article

    The specific role that prolactin plays in lactational infertility, as distinct from other suckling or metabolic cues, remains unresolved. Here, deletion of the prolactin receptor (Prlr) from forebrain neurons or arcuate kisspeptin neurons resulted in failure to maintain normal lactation-induced suppression of estrous cycles. Kisspeptin immunoreactivity and pulsatile LH secretion were increased in these mice, even in the presence of ongoing suckling stimulation and lactation. GCaMP fibre photometry of arcuate kisspeptin neurons revealed that the normal episodic activity of these neurons is rapidly suppressed in pregnancy and this was maintained throughout early lactation. Deletion of Prlr from arcuate kisspeptin neurons resulted in early reactivation of episodic activity of kisspeptin neurons prior to a premature return of reproductive cycles in early lactation. These observations show dynamic variation in arcuate kisspeptin neuronal activity associated with the hormonal changes of pregnancy and lactation, and provide direct evidence that prolactin action on arcuate kisspeptin neurons is necessary for suppressing fertility during lactation in mice.

    1. Neuroscience
    Vincent Huson, Wade G Regehr
    Research Article

    Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.