Cell-density independent increased lymphocyte production and loss rates post-autologous HSCT

  1. Mariona Baliu Piqué
  2. Vera van Hoeven
  3. Julia Drylewicz
  4. Lotte E van der Wagen
  5. Anke Janssen
  6. Sigrid A Otto
  7. Menno C van Zelm
  8. Rob J de Boer
  9. Jürgen JHE Kuball
  10. Jose AM Borghans  Is a corresponding author
  11. Kiki Tesselaar  Is a corresponding author
  1. University Medical Center Utrecht, Netherlands
  2. Amsterdam UMC, Netherlands
  3. Monash University and Alfred Hospital, Australia
  4. Utrecht University, Netherlands

Abstract

Lymphocyte numbers need to be quite tightly regulated. It is generally assumed that lymphocyte production and lifespan increase homeostatically when lymphocyte numbers are low, and vice versa return to normal once cell numbers have normalized. This widely-accepted concept is largely based on experiments in mice, but is hardly investigated in vivo in humans. Here we quantified lymphocyte production and loss rates in vivo in patients 0.5-1 year after their autologous hematopoietic stem cell transplantation (autoHSCT). We indeed found that the production rates of most T-cell and B-cell subsets in autoHSCT-patients were 2 to 8-times higher than in healthy controls, but went hand in hand with a 3 to 9-fold increase in cell loss rates. Both rates also did not normalize when cell numbers did. This shows that increased lymphocyte production and loss rates occur even long after autoHSCT and can persist in the face of apparently normal cell numbers.

Data availability

All data analysed during this study are included in the manuscript Source data is added as separate files for Figure 2, 3, 4, 6,7 and 8.

Article and author information

Author details

  1. Mariona Baliu Piqué

    Center for Translational Immunology, University Medical Center Utrecht, Urecht, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9276-8839
  2. Vera van Hoeven

    Department of Experimental Immunology, Amsterdam UMC, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  3. Julia Drylewicz

    Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9434-8459
  4. Lotte E van der Wagen

    Department of Hematology, University Medical Center Utrecht, Urecht, Netherlands
    Competing interests
    No competing interests declared.
  5. Anke Janssen

    Center for Translational Immunology, University Medical Center Utrecht, Urecht, Netherlands
    Competing interests
    No competing interests declared.
  6. Sigrid A Otto

    Center for Translational Immunology, University Medical Center Utrecht, Urecht, Netherlands
    Competing interests
    No competing interests declared.
  7. Menno C van Zelm

    Department of Immunology and Pathology, Monash University and Alfred Hospital, Melbourne, Australia
    Competing interests
    No competing interests declared.
  8. Rob J de Boer

    Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2130-691X
  9. Jürgen JHE Kuball

    Department of Hematology, University Medical Center Utrecht, Urecht, Netherlands
    Competing interests
    Jürgen JHE Kuball, reports grants from Novartis, Miltenyi Biotech, and Gadeta. Is inventor on multiple patents dealing with γδ T-cell research, ligands, and isolation techniques, and is scientific co-founder and shareholder of Gadeta. (Patent number: 9546998, 9891211, 10324083, 10578609. Publication number: 20200368278, 20200363397, 20190271688, 2019020961, 201901692603, 20180188234, 20170319674, 20170174741, 20150050670)..
  10. Jose AM Borghans

    Central Laboratory for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
    For correspondence
    J.A.M.Borghans@umcutrecht.nl
    Competing interests
    No competing interests declared.
  11. Kiki Tesselaar

    Center for Translational Immunology, University Medical Center Utrecht, Urecht, Netherlands
    For correspondence
    K.Tesselaar@umcutrecht.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9847-0814

Funding

European Union Seventh Framework Programme (FP7-PEOPLE-2012-ITN 317040-QuanTI)

  • Mariona Baliu Piqué

Landsteiner Foundation for Blood Transfusion Research (LSBR grant 0812)

  • Vera van Hoeven

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was approved by the medical ethical committee of the University Medical CenterUtrecht and conducted in accordance with the Helsinki Declaration. Six patients who received an autoHSCT for the treatment of a hematologic malignancy were enrolled in the study after having provided written informed consent

Copyright

© 2021, Baliu Piqué et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 723
    views
  • 79
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mariona Baliu Piqué
  2. Vera van Hoeven
  3. Julia Drylewicz
  4. Lotte E van der Wagen
  5. Anke Janssen
  6. Sigrid A Otto
  7. Menno C van Zelm
  8. Rob J de Boer
  9. Jürgen JHE Kuball
  10. Jose AM Borghans
  11. Kiki Tesselaar
(2021)
Cell-density independent increased lymphocyte production and loss rates post-autologous HSCT
eLife 10:e59775.
https://doi.org/10.7554/eLife.59775

Share this article

https://doi.org/10.7554/eLife.59775

Further reading

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.