On the objectivity, reliability, and validity of deep learning enabled bioimage analyses

Abstract

Bioimage analysis of fluorescent labels is widely used in the life sciences. Recent advances in deep learning (DL) allow automating time-consuming manual image analysis processes based on annotated training data. However, manual annotation of fluorescent features with a low signal-to-noise ratio is somewhat subjective. Training DL models on subjective annotations may be instable or yield biased models. In turn, these models may be unable to reliably detect biological effects. An analysis pipeline integrating data annotation, ground truth estimation, and model training can mitigate this risk. To evaluate this integrated process, we compared different DL-based analysis approaches. With data from two model organisms (mice, zebrafish) and five laboratories, we show that ground truth estimation from multiple human annotators helps to establish objectivity in fluorescent feature annotations. Furthermore, ensembles of multiple models trained on the estimated ground truth establish reliability and validity. Our research provides guidelines for reproducible DL-based bioimage analyses.

Data availability

Official repository of our study "On the objectivity, reliability, and validity of deep learning enabled bioimage analyses" can be found at Dryad (https://doi.org/10.5061/dryad.4b8gtht9d). In addition, we also provide all code in our GitHub repository (https://github.com/matjesg/bioimage_analysis).

The following data sets were generated

Article and author information

Author details

  1. Dennis Segebarth

    Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3806-9324
  2. Matthias Griebel

    Department of Business and Economics, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1959-0242
  3. Nikolai Stein

    Department of Business and Economics, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Cora R von Collenberg

    Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Corinna Martin

    Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Dominik Fiedler

    Institute of Physiology, Westfälische Wilhlems-Universität, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Lucas B Comeras

    Department of Pharmacology, University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  8. Anupam Sah

    Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  9. Victoria Schoeffler

    Department of Child and Adolescent Psychiatry, University Hospital Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Teresa Lüffe

    Department of Child and Adolescent Psychiatry, University Hospital Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Alexander Dürr

    Department of Business and Economics, University of Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  12. Rohini Gupta

    Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  13. Manju Sasi

    Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Christina Lillesaar

    Department of Child and Adolescent Psychiatry, University Hospital Würzburg, Würzburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5166-2851
  15. Maren D Lange

    Institute of Physiology, Westfälische Wilhlems-Universität, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
  16. Ramon O Tasan

    Department of Pharmacology, University of Inssbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
  17. Nicolas Singewald

    Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0166-3370
  18. Hans-Christian Pape

    Institute of Physiology, Westfälische Wilhlems-Universität, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6874-8224
  19. Christoph M Flath

    Department of Business and Economics, University of Würzburg, Würzburg, Germany
    For correspondence
    christoph.flath@uni-wuerzburg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1761-9833
  20. Robert Blum

    Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
    For correspondence
    Blum_R@ukw.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5270-3854

Funding

Deutsche Forschungsgemeinschaft (ID 44541416 - TRR58,A10)

  • Robert Blum

Deutsche Forschungsgemeinschaft (ID 44541416 - TRR58,A03)

  • Hans-Christian Pape

Deutsche Forschungsgemeinschaft (ID 44541416 - TRR58,B08)

  • Maren D Lange

Graduate School of Life Sciences Wuerzburg (fellowship)

  • Rohini Gupta
  • Manju Sasi

Austrian Science Fund (P29952 & P25851)

  • Ramon O Tasan

Austrian Science Fund (I2433-B26,DKW-1206,SFB F4410)

  • Nicolas Singewald

Interdisziplinaeres Zentrum fuer Klinische Zusammenarbeit Wuerzburg (N-320)

  • Christina Lillesaar

Deutsche Forschungsgemeinschaft (ID 424778381)

  • Robert Blum

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Scott E Fraser, University of Southern California, United States

Ethics

Animal experimentation: All effort was taken to minimize the number of animals used and their suffering.Lab-Wue1: All experiments with C57BL/6J wildtype mice were in accordance with the Guidelines set by the European Union and approved by our institutional Animal Care, the Utilization Committee and the Regierung von Unterfranken, Würzburg, Germany (License number: 55.2-2531.01-95/13). C57BL/6J wildtype mice were bred in the animal facility of the Institute of Clinical Neurobiology, University Hospital of Würzburg, Germany.Lab Mue: Male All animal experiments with male C57Bl/6J mice (Charles River, Sulzfeld, Germany) were carried out in accordance with European regulations on animal experimentation and protocols were approved by the local authorities (Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen).Lab-Inns1: Experiments were performed in adult, male C57Bl/6NCrl mice (Charles River, Sulzfeld, Germany). They were bred in the Department of Pharmacology at the Medical University Innsbruck, Austria. All procedures involving animals and animal care were conducted in accordance with international laws and policies (Directive 2010/63/EU of the European parliament and of the council of 22 September 2010 on the protection of animals used for scientific purposes; Guide for the Care and Use of Laboratory Animals, U.S. National Research Council, 2011) and were approved by the Austrian Ministry of Science.Lab-Inns2: Male 129S1/SvImJ (S1) mice (Charles River, Sulzfeld, Germany) were used for experimentation. The Austrian Animal Experimentation Ethics Board (Bundesministerium für Wissenschaft Forschung und Wirtschaft, Kommission für Tierversuchsangelegenheiten) approved all experimental procedures.

Version history

  1. Received: June 15, 2020
  2. Accepted: October 16, 2020
  3. Accepted Manuscript published: October 19, 2020 (version 1)
  4. Version of Record published: December 2, 2020 (version 2)

Copyright

© 2020, Segebarth et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,399
    Page views
  • 461
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dennis Segebarth
  2. Matthias Griebel
  3. Nikolai Stein
  4. Cora R von Collenberg
  5. Corinna Martin
  6. Dominik Fiedler
  7. Lucas B Comeras
  8. Anupam Sah
  9. Victoria Schoeffler
  10. Teresa Lüffe
  11. Alexander Dürr
  12. Rohini Gupta
  13. Manju Sasi
  14. Christina Lillesaar
  15. Maren D Lange
  16. Ramon O Tasan
  17. Nicolas Singewald
  18. Hans-Christian Pape
  19. Christoph M Flath
  20. Robert Blum
(2020)
On the objectivity, reliability, and validity of deep learning enabled bioimage analyses
eLife 9:e59780.
https://doi.org/10.7554/eLife.59780

Share this article

https://doi.org/10.7554/eLife.59780

Further reading

    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Arthur L Schneider, Rita Martins-Silva ... Nuno L Barbosa-Morais
    Tools and Resources

    We herein introduce voyAGEr, an online graphical interface to explore age-related gene expression alterations in 49 human tissues. voyAGEr offers a visualisation and statistical toolkit for the finding and functional exploration of sex- and tissue-specific transcriptomic changes with age. In its conception, we developed a novel bioinformatics pipeline leveraging RNA sequencing data, from the GTEx project, encompassing more than 900 individuals. voyAGEr reveals transcriptomic signatures of the known asynchronous ageing between tissues, allowing the observation of tissue-specific age periods of major transcriptional changes, associated with alterations in different biological pathways, cellular composition, and disease conditions. Notably, voyAGEr was created to assist researchers with no expertise in bioinformatics, providing a supportive framework for elaborating, testing and refining their hypotheses on the molecular nature of human ageing and its association with pathologies, thereby also aiding in the discovery of novel therapeutic targets. voyAGEr is freely available at https://compbio.imm.medicina.ulisboa.pt/app/voyAGEr.

    1. Cancer Biology
    2. Computational and Systems Biology
    Bingrui Li, Fernanda G Kugeratski, Raghu Kalluri
    Research Article

    Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.