Abstract

The mitochondrial calcium uniporter is a Ca2+-gated ion channel complex that controls mitochondrial Ca2+ entry and regulates cell metabolism. MCU and EMRE form the channel while Ca2+-dependent regulation is conferred by MICU1 and MICU2 through an enigmatic process. We present a cryo-EM structure of an MCU-EMRE-MICU1-MICU2 holocomplex comprising MCU and EMRE subunits from the beetle Tribolium castaneum in complex with a human MICU1-MICU2 heterodimer at 3.3 Å resolution. With analogy to how neuronal channels are blocked by protein toxins, a uniporter interaction domain on MICU1 binds to a channel receptor site comprising MCU and EMRE subunits to inhibit ion flow under resting Ca2+ conditions. A Ca2+-bound structure of MICU1-MICU2 at 3.1 Å resolution indicates how Ca2+-dependent changes enable dynamic response to cytosolic Ca2+ signals.

Data availability

The atomic coordinates and EM maps have been deposited in the Protein Data Bank (www.rcsb.org) and the EMDB (www.ebi.ac.uk/pdbe/emdb/): PDB ID 6XQN, EMDB ID EMD-22290 (holocomplex in low Ca2+); PDB ID 6XQO, EMDB ID EMD-22291 (Ca2+-bound MICU1-MICU2 heterodimer).

The following data sets were generated

Article and author information

Author details

  1. Chongyuan Wang

    Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Agata Jacewicz

    Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bryce D Delgado

    Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Rozbeh Baradaran

    Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Stephen Barstow Long

    Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
    For correspondence
    longs@mskcc.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8144-1398

Funding

National Institute of General Medical Sciences (R35GM131921)

  • Stephen Barstow Long

National Cancer Institute (P30CA008748)

  • Stephen Barstow Long

National Institute of General Medical Sciences (5T32GM008539)

  • Bryce D Delgado

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kenton J Swartz, National Institute of Neurological Disorders and Stroke, National Institutes of Health, United States

Version history

  1. Received: June 13, 2020
  2. Accepted: July 14, 2020
  3. Accepted Manuscript published: July 15, 2020 (version 1)
  4. Accepted Manuscript updated: July 23, 2020 (version 2)
  5. Version of Record published: August 18, 2020 (version 3)

Copyright

© 2020, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,112
    views
  • 545
    downloads
  • 45
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chongyuan Wang
  2. Agata Jacewicz
  3. Bryce D Delgado
  4. Rozbeh Baradaran
  5. Stephen Barstow Long
(2020)
Structures reveal gatekeeping of the mitochondrial Ca2+ uniporter by MICU1-MICU2
eLife 9:e59991.
https://doi.org/10.7554/eLife.59991

Share this article

https://doi.org/10.7554/eLife.59991

Further reading

    1. Biochemistry and Chemical Biology
    Boglarka Zambo, Evelina Edelweiss ... Gergo Gogl
    Research Article

    Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.