Telomerase biogenesis requires a novel Mex67 function and a cytoplasmic association with the Sm7 complex

  1. Yulia Vasianovich
  2. Emmanuel Bajon
  3. Raymund J Wellinger  Is a corresponding author
  1. Fac Medecine/Université de Sherbrooke, Canada

Abstract

The templating RNA is the core of the telomerase reverse transcriptase. In Saccharomyces cerevisiae, the complex life cycle and maturation of telomerase includes a cytoplasmic stage. However, timing and reason for this cytoplasmic passage are poorly understood. Here, we use inducible RNA tagging experiments to show that immediately after transcription, newly synthesized telomerase RNAs undergo one round of nucleo-cytoplasmic shuttling. Their export depends entirely on Crm1/Xpo1, whereas re-import is mediated by Kap122 plus redundant, kinetically less efficient import pathways. Strikingly, Mex67 is essential to stabilize newly transcribed RNA before Xpo1-mediated nuclear export. The results further show that the Sm7 complex associates with and stabilizes the telomerase RNA in the cytoplasm and promotes its nuclear re-import. Remarkably, after this cytoplasmic passage, the nuclear stability of telomerase RNA no longer depends on Mex67. These results underscore the utility of inducible RNA tagging and challenge current models of telomerase maturation.

Data availability

Source data files have been uploaded. Strains and materials generated for this study will be freely available.

Article and author information

Author details

  1. Yulia Vasianovich

    Dept of Microbiology and Infectious Diseases, Fac Medecine/Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    No competing interests declared.
  2. Emmanuel Bajon

    Dept of Microbiology and Infectious Diseases, Fac Medecine/Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1588-2953
  3. Raymund J Wellinger

    Dept of Microbiology and Infectious Diseases, Fac Medecine/Université de Sherbrooke, Sherbrooke, Canada
    For correspondence
    Raymund.Wellinger@Usherbrooke.ca
    Competing interests
    Raymund J Wellinger, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6670-2759

Funding

Canada Research Chairs (CRC in telomere biology)

  • Raymund J Wellinger

Canadian Institutes of Health Research (FDN154315)

  • Raymund J Wellinger

Fonds de Recherche du Québec - Santé (Post-Doc Fellowship)

  • Yulia Vasianovich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Andrés Aguilera, CABIMER, Universidad de Sevilla, Spain

Version history

  1. Received: June 14, 2020
  2. Accepted: October 22, 2020
  3. Accepted Manuscript published: October 23, 2020 (version 1)
  4. Version of Record published: November 5, 2020 (version 2)

Copyright

© 2020, Vasianovich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 883
    views
  • 134
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yulia Vasianovich
  2. Emmanuel Bajon
  3. Raymund J Wellinger
(2020)
Telomerase biogenesis requires a novel Mex67 function and a cytoplasmic association with the Sm7 complex
eLife 9:e60000.
https://doi.org/10.7554/eLife.60000

Share this article

https://doi.org/10.7554/eLife.60000

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.

    1. Chromosomes and Gene Expression
    Marwan Anoud, Emmanuelle Delagoutte ... Jean-Paul Concordet
    Research Article

    Tardigrades are microscopic animals renowned for their ability to withstand extreme conditions, including high doses of ionizing radiation (IR). To better understand their radio-resistance, we first characterized induction and repair of DNA double- and single-strand breaks after exposure to IR in the model species Hypsibius exemplaris. Importantly, we found that the rate of single-strand breaks induced was roughly equivalent to that in human cells, suggesting that DNA repair plays a predominant role in tardigrades’ radio-resistance. To identify novel tardigrade-specific genes involved, we next conducted a comparative transcriptomics analysis across three different species. In all three species, many DNA repair genes were among the most strongly overexpressed genes alongside a novel tardigrade-specific gene, which we named Tardigrade DNA damage Response 1 (TDR1). We found that TDR1 protein interacts with DNA and forms aggregates at high concentration suggesting it may condensate DNA and preserve chromosome organization until DNA repair is accomplished. Remarkably, when expressed in human cells, TDR1 improved resistance to Bleomycin, a radiomimetic drug. Based on these findings, we propose that TDR1 is a novel tardigrade-specific gene conferring resistance to IR. Our study sheds light on mechanisms of DNA repair helping cope with high levels of DNA damage inflicted by IR.