Telomerase biogenesis requires a novel Mex67 function and a cytoplasmic association with the Sm7 complex

  1. Yulia Vasianovich
  2. Emmanuel Bajon
  3. Raymund J Wellinger  Is a corresponding author
  1. Fac Medecine/Université de Sherbrooke, Canada

Abstract

The templating RNA is the core of the telomerase reverse transcriptase. In Saccharomyces cerevisiae, the complex life cycle and maturation of telomerase includes a cytoplasmic stage. However, timing and reason for this cytoplasmic passage are poorly understood. Here, we use inducible RNA tagging experiments to show that immediately after transcription, newly synthesized telomerase RNAs undergo one round of nucleo-cytoplasmic shuttling. Their export depends entirely on Crm1/Xpo1, whereas re-import is mediated by Kap122 plus redundant, kinetically less efficient import pathways. Strikingly, Mex67 is essential to stabilize newly transcribed RNA before Xpo1-mediated nuclear export. The results further show that the Sm7 complex associates with and stabilizes the telomerase RNA in the cytoplasm and promotes its nuclear re-import. Remarkably, after this cytoplasmic passage, the nuclear stability of telomerase RNA no longer depends on Mex67. These results underscore the utility of inducible RNA tagging and challenge current models of telomerase maturation.

Data availability

Source data files have been uploaded. Strains and materials generated for this study will be freely available.

Article and author information

Author details

  1. Yulia Vasianovich

    Dept of Microbiology and Infectious Diseases, Fac Medecine/Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    No competing interests declared.
  2. Emmanuel Bajon

    Dept of Microbiology and Infectious Diseases, Fac Medecine/Université de Sherbrooke, Sherbrooke, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1588-2953
  3. Raymund J Wellinger

    Dept of Microbiology and Infectious Diseases, Fac Medecine/Université de Sherbrooke, Sherbrooke, Canada
    For correspondence
    Raymund.Wellinger@Usherbrooke.ca
    Competing interests
    Raymund J Wellinger, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6670-2759

Funding

Canada Research Chairs (CRC in telomere biology)

  • Raymund J Wellinger

Canadian Institutes of Health Research (FDN154315)

  • Raymund J Wellinger

Fonds de Recherche du Québec - Santé (Post-Doc Fellowship)

  • Yulia Vasianovich

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Vasianovich et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 908
    views
  • 135
    downloads
  • 12
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yulia Vasianovich
  2. Emmanuel Bajon
  3. Raymund J Wellinger
(2020)
Telomerase biogenesis requires a novel Mex67 function and a cytoplasmic association with the Sm7 complex
eLife 9:e60000.
https://doi.org/10.7554/eLife.60000

Share this article

https://doi.org/10.7554/eLife.60000

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Maruti Nandan Rai, Qing Lan ... Koon Ho Wong
    Research Article Updated

    Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata’s survival in macrophages and drug tolerance.

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.