Elongation inhibitors do not prevent the release of puromycylated nascent polypeptide chains from ribosomes

  1. Benjamin D Hobson
  2. Linghao Kong
  3. Erik W Hartwick
  4. Ruben L Gonzalez
  5. Peter A Sims  Is a corresponding author
  1. Columbia University Irving Medical Center, United States
  2. Columbia University, United States

Abstract

Puromycin is an amino-acyl transfer RNA analog widely employed in studies of protein synthesis. Since puromycin is covalently incorporated into nascent polypeptide chains, anti-puromycin immunofluorescence enables visualization of nascent protein synthesis. A common assumption in studies of local messenger RNA translation is that the anti-puromycin staining of puromycylated nascent polypeptides in fixed cells accurately reports on their original site of translation, particularly when ribosomes are stalled with elongation inhibitors prior to puromycin treatment. However, when we attempted to implement a proximity ligation assay to detect ribosome-puromycin complexes, we found no evidence to support this assumption. We further demonstrated, using biochemical assays and live cell imaging of nascent polypeptides in mammalian cells, that puromycylated nascent polypeptides rapidly dissociate from ribosomes even in the presence of elongation inhibitors. Our results suggest that attempts to define precise subcellular translation sites using anti-puromycin immunostaining may be confounded by release of puromycylated nascent polypeptide chains prior to fixation.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for all Figures.

The following previously published data sets were used

Article and author information

Author details

  1. Benjamin D Hobson

    Depart of Systems Biology, Medical Scientist Training Program, Columbia University Irving Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2745-5318
  2. Linghao Kong

    Depart of Systems Biology, Columbia University Irving Medical Center, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Erik W Hartwick

    Department of Chemistry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Ruben L Gonzalez

    Department of Chemistry, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1344-5581
  5. Peter A Sims

    Depart of Systems Biology, Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, United States
    For correspondence
    pas2182@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3921-4837

Funding

National Institutes of Health (R33CA202827)

  • Peter A Sims

National Institutes of Health (F30 DA047775)

  • Benjamin D Hobson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Robert H Singer, Albert Einstein College of Medicine, United States

Version history

  1. Received: June 15, 2020
  2. Accepted: August 4, 2020
  3. Accepted Manuscript published: August 26, 2020 (version 1)
  4. Version of Record published: September 14, 2020 (version 2)

Copyright

© 2020, Hobson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,774
    views
  • 488
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin D Hobson
  2. Linghao Kong
  3. Erik W Hartwick
  4. Ruben L Gonzalez
  5. Peter A Sims
(2020)
Elongation inhibitors do not prevent the release of puromycylated nascent polypeptide chains from ribosomes
eLife 9:e60048.
https://doi.org/10.7554/eLife.60048

Share this article

https://doi.org/10.7554/eLife.60048

Further reading

    1. Biochemistry and Chemical Biology
    Pattama Wiriyasermkul, Satomi Moriyama ... Shushi Nagamori
    Research Article

    Transporter research primarily relies on the canonical substrates of well-established transporters. This approach has limitations when studying transporters for the low-abundant micromolecules, such as micronutrients, and may not reveal physiological functions of the transporters. While d-serine, a trace enantiomer of serine in the circulation, was discovered as an emerging biomarker of kidney function, its transport mechanisms in the periphery remain unknown. Here, using a multi-hierarchical approach from body fluids to molecules, combining multi-omics, cell-free synthetic biochemistry, and ex vivo transport analyses, we have identified two types of renal d-serine transport systems. We revealed that the small amino acid transporter ASCT2 serves as a d-serine transporter previously uncharacterized in the kidney and discovered d-serine as a non-canonical substrate of the sodium-coupled monocarboxylate transporters (SMCTs). These two systems are physiologically complementary, but ASCT2 dominates the role in the pathological condition. Our findings not only shed light on renal d-serine transport, but also clarify the importance of non-canonical substrate transport. This study provides a framework for investigating multiple transport systems of various trace micromolecules under physiological conditions and in multifactorial diseases.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Natalia Dolgova, Eva-Maria E Uhlemann ... Oleg Y Dmitriev
    Research Article

    Mediator of ERBB2-driven Cell Motility 1 (MEMO1) is an evolutionary conserved protein implicated in many biological processes; however, its primary molecular function remains unknown. Importantly, MEMO1 is overexpressed in many types of cancer and was shown to modulate breast cancer metastasis through altered cell motility. To better understand the function of MEMO1 in cancer cells, we analyzed genetic interactions of MEMO1 using gene essentiality data from 1028 cancer cell lines and found multiple iron-related genes exhibiting genetic relationships with MEMO1. We experimentally confirmed several interactions between MEMO1 and iron-related proteins in living cells, most notably, transferrin receptor 2 (TFR2), mitoferrin-2 (SLC25A28), and the global iron response regulator IRP1 (ACO1). These interactions indicate that cells with high MEMO1 expression levels are hypersensitive to the disruptions in iron distribution. Our data also indicate that MEMO1 is involved in ferroptosis and is linked to iron supply to mitochondria. We have found that purified MEMO1 binds iron with high affinity under redox conditions mimicking intracellular environment and solved MEMO1 structures in complex with iron and copper. Our work reveals that the iron coordination mode in MEMO1 is very similar to that of iron-containing extradiol dioxygenases, which also display a similar structural fold. We conclude that MEMO1 is an iron-binding protein that modulates iron homeostasis in cancer cells.