A bacterial membrane sculpting protein with BAR domain-like activity

  1. Daniel A Phillips  Is a corresponding author
  2. Lori A Zacharoff  Is a corresponding author
  3. Cheri M Hampton
  4. Grace W Chong
  5. Anthony P Malanoski
  6. Lauren Ann Metskas
  7. Shuai Xu
  8. Lina J Bird
  9. Brian J Eddie
  10. Aleksandr E Miklos
  11. Grant J Jensen
  12. Lawrence F Drummy
  13. Mohamed Y El-Naggar
  14. Sarah M Glaven
  1. Oak Ridge Institute for Science and Education / US Army DEVCOM Chemical Biological Center, United States
  2. University of Southern California, United States
  3. Wright-Patterson Air Force Base, United States
  4. US Naval Research Laboratory, United States
  5. California Institute of Technology, United States
  6. US Army DEVCOM Chemical Biological Center, United States

Abstract

Bin/Amphiphysin/RVS (BAR) domain proteins belong to a superfamily of coiled-coil proteins influencing membrane curvature in eukaryotes and are associated with vesicle biogenesis, vesicle-mediated protein trafficking, and intracellular signaling. Here we report a bacterial protein with BAR domain-like activity, BdpA, from Shewanella oneidensis MR-1, known to produce redox-active membrane vesicles and micrometer-scale outer membrane extensions (OMEs). BdpA is required for uniform size distribution of membrane vesicles and influences scaffolding of OMEs into a consistent diameter and curvature. Cryogenic transmission electron microscopy reveals a strain lacking BdpA produces lobed, disordered OMEs rather than membrane tubules or narrow chains produced by the wild type strain. Overexpression of BdpA promotes OME formation during planktonic growth of S. oneidensis where they are not typically observed. Heterologous expression results in OME production in Marinobacter atlanticus and Escherichia coli. Based on the ability of BdpA to alter membrane architecture in vivo, we propose that BdpA and its homologs comprise a newly identified class of bacterial BAR domain-like proteins.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset identifier PXD020577.

The following data sets were generated

Article and author information

Author details

  1. Daniel A Phillips

    Oak Ridge Institute for Science and Education / US Army DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, United States
    For correspondence
    daniel.a.phillips62.ctr@army.mil
    Competing interests
    Daniel A Phillips, DP and SG hold the patent US10793865B2 on Transferrable mechanism of generating inducible.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2759-5246
  2. Lori A Zacharoff

    Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
    For correspondence
    zacharof@usc.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8657-0968
  3. Cheri M Hampton

    Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0069-8712
  4. Grace W Chong

    Department of Biological Sciences, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Anthony P Malanoski

    Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
    Competing interests
    No competing interests declared.
  6. Lauren Ann Metskas

    Biological Sciences, Chemistry, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8073-6960
  7. Shuai Xu

    Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Lina J Bird

    Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
    Competing interests
    No competing interests declared.
  9. Brian J Eddie

    Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
    Competing interests
    No competing interests declared.
  10. Aleksandr E Miklos

    BioSciences Division, BioChemistry Branch, US Army DEVCOM Chemical Biological Center, Aberdeen Proving Ground, United States
    Competing interests
    No competing interests declared.
  11. Grant J Jensen

    Biology and Bioengineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1556-4864
  12. Lawrence F Drummy

    Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, United States
    Competing interests
    No competing interests declared.
  13. Mohamed Y El-Naggar

    Department of Physics and Astronomy, Biological Sciences, and Chemistry, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5599-6309
  14. Sarah M Glaven

    Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
    Competing interests
    Sarah M Glaven, DP and SG hold the patent US10793865B2 on Transferrable mechanism of generating inducible.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0857-3391

Funding

U.S. Department of Defense

  • Sarah M Glaven

Office of Naval Research (N00014-18-1-2632)

  • Mohamed Y El-Naggar

National Science Foundation (DEB-1542527)

  • Mohamed Y El-Naggar

U.S. Department of Energy (DE-FG02-13ER16415)

  • Mohamed Y El-Naggar

National Institute of General Medical Sciences (GM122588)

  • Grant J Jensen

U.S. Army Combat Capabilities Development Command (PE 0601102A Project VR9)

  • Aleksandr E Miklos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karina B Xavier, Instituto Gulbenkian de Ciência, Portugal

Version history

  1. Preprint posted: January 31, 2020 (view preprint)
  2. Received: June 15, 2020
  3. Accepted: October 12, 2021
  4. Accepted Manuscript published: October 13, 2021 (version 1)
  5. Version of Record published: December 20, 2021 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,091
    views
  • 318
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel A Phillips
  2. Lori A Zacharoff
  3. Cheri M Hampton
  4. Grace W Chong
  5. Anthony P Malanoski
  6. Lauren Ann Metskas
  7. Shuai Xu
  8. Lina J Bird
  9. Brian J Eddie
  10. Aleksandr E Miklos
  11. Grant J Jensen
  12. Lawrence F Drummy
  13. Mohamed Y El-Naggar
  14. Sarah M Glaven
(2021)
A bacterial membrane sculpting protein with BAR domain-like activity
eLife 10:e60049.
https://doi.org/10.7554/eLife.60049

Share this article

https://doi.org/10.7554/eLife.60049

Further reading

    1. Microbiology and Infectious Disease
    Moagi Tube Shaku, Peter K Um ... Bavesh D Kana
    Research Article

    Mechanisms by which Mycobacterium tuberculosis (Mtb) evades pathogen recognition receptor activation during infection may offer insights for the development of improved tuberculosis (TB) vaccines. Whilst Mtb elicits NOD-2 activation through host recognition of its peptidoglycan-derived muramyl dipeptide (MDP), it masks the endogenous NOD-1 ligand through amidation of glutamate at the second position in peptidoglycan side-chains. As the current BCG vaccine is derived from pathogenic mycobacteria, a similar situation prevails. To alleviate this masking ability and to potentially improve efficacy of the BCG vaccine, we used CRISPRi to inhibit expression of the essential enzyme pair, MurT-GatD, implicated in amidation of peptidoglycan side-chains. We demonstrate that depletion of these enzymes results in reduced growth, cell wall defects, increased susceptibility to antibiotics, altered spatial localization of new peptidoglycan and increased NOD-1 expression in macrophages. In cell culture experiments, training of a human monocyte cell line with this recombinant BCG yielded improved control of Mtb growth. In the murine model of TB infection, we demonstrate that depletion of MurT-GatD in BCG, which is expected to unmask the D-glutamate diaminopimelate (iE-DAP) NOD-1 ligand, yields superior prevention of TB disease compared to the standard BCG vaccine. In vitro and in vivo experiments in this study demonstrate the feasibility of gene regulation platforms such as CRISPRi to alter antigen presentation in BCG in a bespoke manner that tunes immunity towards more effective protection against TB disease.

    1. Microbiology and Infectious Disease
    Ryan Thiermann, Michael Sandler ... Suckjoon Jun
    Tools and Resources

    Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge. To fill this gap, we implemented our own software, MM3, as a plugin for the multidimensional image viewer napari. napari-MM3 is a complete and modular image analysis pipeline for mother machine data, which takes advantage of the high-level interactivity of napari. Here, we give an overview of napari-MM3 and test it against several well-designed and widely used image analysis pipelines, including BACMMAN and DeLTA. Researchers often analyze mother machine data with custom scripts using varied image analysis methods, but a quantitative comparison of the output of different pipelines has been lacking. To this end, we show that key single-cell physiological parameter correlations and distributions are robust to the choice of analysis method. However, we also find that small changes in thresholding parameters can systematically alter parameters extracted from single-cell imaging experiments. Moreover, we explicitly show that in deep learning-based segmentation, ‘what you put is what you get’ (WYPIWYG) – that is, pixel-level variation in training data for cell segmentation can propagate to the model output and bias spatial and temporal measurements. Finally, while the primary purpose of this work is to introduce the image analysis software that we have developed over the last decade in our lab, we also provide information for those who want to implement mother machine-based high-throughput imaging and analysis methods in their research.