A bacterial membrane sculpting protein with BAR domain-like activity

  1. Daniel A Phillips  Is a corresponding author
  2. Lori A Zacharoff  Is a corresponding author
  3. Cheri M Hampton
  4. Grace W Chong
  5. Anthony P Malanoski
  6. Lauren Ann Metskas
  7. Shuai Xu
  8. Lina J Bird
  9. Brian J Eddie
  10. Aleksandr E Miklos
  11. Grant J Jensen
  12. Lawrence F Drummy
  13. Mohamed Y El-Naggar
  14. Sarah M Glaven
  1. Oak Ridge Institute for Science and Education / US Army DEVCOM Chemical Biological Center, United States
  2. University of Southern California, United States
  3. Wright-Patterson Air Force Base, United States
  4. US Naval Research Laboratory, United States
  5. California Institute of Technology, United States
  6. US Army DEVCOM Chemical Biological Center, United States

Abstract

Bin/Amphiphysin/RVS (BAR) domain proteins belong to a superfamily of coiled-coil proteins influencing membrane curvature in eukaryotes and are associated with vesicle biogenesis, vesicle-mediated protein trafficking, and intracellular signaling. Here we report a bacterial protein with BAR domain-like activity, BdpA, from Shewanella oneidensis MR-1, known to produce redox-active membrane vesicles and micrometer-scale outer membrane extensions (OMEs). BdpA is required for uniform size distribution of membrane vesicles and influences scaffolding of OMEs into a consistent diameter and curvature. Cryogenic transmission electron microscopy reveals a strain lacking BdpA produces lobed, disordered OMEs rather than membrane tubules or narrow chains produced by the wild type strain. Overexpression of BdpA promotes OME formation during planktonic growth of S. oneidensis where they are not typically observed. Heterologous expression results in OME production in Marinobacter atlanticus and Escherichia coli. Based on the ability of BdpA to alter membrane architecture in vivo, we propose that BdpA and its homologs comprise a newly identified class of bacterial BAR domain-like proteins.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset identifier PXD020577.

The following data sets were generated

Article and author information

Author details

  1. Daniel A Phillips

    Oak Ridge Institute for Science and Education / US Army DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, United States
    For correspondence
    daniel.a.phillips62.ctr@army.mil
    Competing interests
    Daniel A Phillips, DP and SG hold the patent US10793865B2 on Transferrable mechanism of generating inducible.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2759-5246
  2. Lori A Zacharoff

    Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
    For correspondence
    zacharof@usc.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8657-0968
  3. Cheri M Hampton

    Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0069-8712
  4. Grace W Chong

    Department of Biological Sciences, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Anthony P Malanoski

    Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
    Competing interests
    No competing interests declared.
  6. Lauren Ann Metskas

    Biological Sciences, Chemistry, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8073-6960
  7. Shuai Xu

    Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Lina J Bird

    Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
    Competing interests
    No competing interests declared.
  9. Brian J Eddie

    Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
    Competing interests
    No competing interests declared.
  10. Aleksandr E Miklos

    BioSciences Division, BioChemistry Branch, US Army DEVCOM Chemical Biological Center, Aberdeen Proving Ground, United States
    Competing interests
    No competing interests declared.
  11. Grant J Jensen

    Biology and Bioengineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1556-4864
  12. Lawrence F Drummy

    Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, United States
    Competing interests
    No competing interests declared.
  13. Mohamed Y El-Naggar

    Department of Physics and Astronomy, Biological Sciences, and Chemistry, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5599-6309
  14. Sarah M Glaven

    Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
    Competing interests
    Sarah M Glaven, DP and SG hold the patent US10793865B2 on Transferrable mechanism of generating inducible.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0857-3391

Funding

U.S. Department of Defense

  • Sarah M Glaven

Office of Naval Research (N00014-18-1-2632)

  • Mohamed Y El-Naggar

National Science Foundation (DEB-1542527)

  • Mohamed Y El-Naggar

U.S. Department of Energy (DE-FG02-13ER16415)

  • Mohamed Y El-Naggar

National Institute of General Medical Sciences (GM122588)

  • Grant J Jensen

U.S. Army Combat Capabilities Development Command (PE 0601102A Project VR9)

  • Aleksandr E Miklos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,228
    views
  • 336
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel A Phillips
  2. Lori A Zacharoff
  3. Cheri M Hampton
  4. Grace W Chong
  5. Anthony P Malanoski
  6. Lauren Ann Metskas
  7. Shuai Xu
  8. Lina J Bird
  9. Brian J Eddie
  10. Aleksandr E Miklos
  11. Grant J Jensen
  12. Lawrence F Drummy
  13. Mohamed Y El-Naggar
  14. Sarah M Glaven
(2021)
A bacterial membrane sculpting protein with BAR domain-like activity
eLife 10:e60049.
https://doi.org/10.7554/eLife.60049

Share this article

https://doi.org/10.7554/eLife.60049

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Amanda Mixon Blackwell, Yasaman Jami-Alahmadi ... Paul A Sigala
    Research Article

    Malaria parasites have evolved unusual metabolic adaptations that specialize them for growth within heme-rich human erythrocytes. During blood-stage infection, Plasmodium falciparum parasites internalize and digest abundant host hemoglobin within the digestive vacuole. This massive catabolic process generates copious free heme, most of which is biomineralized into inert hemozoin. Parasites also express a divergent heme oxygenase (HO)-like protein (PfHO) that lacks key active-site residues and has lost canonical HO activity. The cellular role of this unusual protein that underpins its retention by parasites has been unknown. To unravel PfHO function, we first determined a 2.8 Å-resolution X-ray structure that revealed a highly α-helical fold indicative of distant HO homology. Localization studies unveiled PfHO targeting to the apicoplast organelle, where it is imported and undergoes N-terminal processing but retains most of the electropositive transit peptide. We observed that conditional knockdown of PfHO was lethal to parasites, which died from defective apicoplast biogenesis and impaired isoprenoid-precursor synthesis. Complementation and molecular-interaction studies revealed an essential role for the electropositive N-terminus of PfHO, which selectively associates with the apicoplast genome and enzymes involved in nucleic acid metabolism and gene expression. PfHO knockdown resulted in a specific deficiency in levels of apicoplast-encoded RNA but not DNA. These studies reveal an essential function for PfHO in apicoplast maintenance and suggest that Plasmodium repurposed the conserved HO scaffold from its canonical heme-degrading function in the ancestral chloroplast to fulfill a critical adaptive role in organelle gene expression.

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Priya M Christensen, Jonathan Martin ... Kelli L Palmer
    Research Article

    Bacterial membranes are complex and dynamic, arising from an array of evolutionary pressures. One enzyme that alters membrane compositions through covalent lipid modification is MprF. We recently identified that Streptococcus agalactiae MprF synthesizes lysyl-phosphatidylglycerol (Lys-PG) from anionic PG, and a novel cationic lipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), from neutral glycolipid Glc-DAG. This unexpected result prompted us to investigate whether Lys-Glc-DAG occurs in other MprF-containing bacteria, and whether other novel MprF products exist. Here, we studied protein sequence features determining MprF substrate specificity. First, pairwise analyses identified several streptococcal MprFs synthesizing Lys-Glc-DAG. Second, a restricted Boltzmann machine-guided approach led us to discover an entirely new substrate for MprF in Enterococcus, diglucosyl-diacylglycerol (Glc2-DAG), and an expanded set of organisms that modify glycolipid substrates using MprF. Overall, we combined the wealth of available sequence data with machine learning to model evolutionary constraints on MprF sequences across the bacterial domain, thereby identifying a novel cationic lipid.