A bacterial membrane sculpting protein with BAR domain-like activity

  1. Daniel A Phillips  Is a corresponding author
  2. Lori A Zacharoff  Is a corresponding author
  3. Cheri M Hampton
  4. Grace W Chong
  5. Anthony P Malanoski
  6. Lauren Ann Metskas
  7. Shuai Xu
  8. Lina J Bird
  9. Brian J Eddie
  10. Aleksandr E Miklos
  11. Grant J Jensen
  12. Lawrence F Drummy
  13. Mohamed Y El-Naggar
  14. Sarah M Glaven
  1. Oak Ridge Institute for Science and Education / US Army DEVCOM Chemical Biological Center, United States
  2. University of Southern California, United States
  3. Wright-Patterson Air Force Base, United States
  4. US Naval Research Laboratory, United States
  5. California Institute of Technology, United States
  6. US Army DEVCOM Chemical Biological Center, United States

Abstract

Bin/Amphiphysin/RVS (BAR) domain proteins belong to a superfamily of coiled-coil proteins influencing membrane curvature in eukaryotes and are associated with vesicle biogenesis, vesicle-mediated protein trafficking, and intracellular signaling. Here we report a bacterial protein with BAR domain-like activity, BdpA, from Shewanella oneidensis MR-1, known to produce redox-active membrane vesicles and micrometer-scale outer membrane extensions (OMEs). BdpA is required for uniform size distribution of membrane vesicles and influences scaffolding of OMEs into a consistent diameter and curvature. Cryogenic transmission electron microscopy reveals a strain lacking BdpA produces lobed, disordered OMEs rather than membrane tubules or narrow chains produced by the wild type strain. Overexpression of BdpA promotes OME formation during planktonic growth of S. oneidensis where they are not typically observed. Heterologous expression results in OME production in Marinobacter atlanticus and Escherichia coli. Based on the ability of BdpA to alter membrane architecture in vivo, we propose that BdpA and its homologs comprise a newly identified class of bacterial BAR domain-like proteins.

Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset identifier PXD020577.

The following data sets were generated

Article and author information

Author details

  1. Daniel A Phillips

    Oak Ridge Institute for Science and Education / US Army DEVCOM Chemical Biological Center, Aberdeen Proving Grounds, United States
    For correspondence
    daniel.a.phillips62.ctr@army.mil
    Competing interests
    Daniel A Phillips, DP and SG hold the patent US10793865B2 on Transferrable mechanism of generating inducible.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2759-5246
  2. Lori A Zacharoff

    Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
    For correspondence
    zacharof@usc.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8657-0968
  3. Cheri M Hampton

    Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0069-8712
  4. Grace W Chong

    Department of Biological Sciences, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  5. Anthony P Malanoski

    Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
    Competing interests
    No competing interests declared.
  6. Lauren Ann Metskas

    Biological Sciences, Chemistry, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8073-6960
  7. Shuai Xu

    Department of Physics and Astronomy, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
  8. Lina J Bird

    Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
    Competing interests
    No competing interests declared.
  9. Brian J Eddie

    Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
    Competing interests
    No competing interests declared.
  10. Aleksandr E Miklos

    BioSciences Division, BioChemistry Branch, US Army DEVCOM Chemical Biological Center, Aberdeen Proving Ground, United States
    Competing interests
    No competing interests declared.
  11. Grant J Jensen

    Biology and Bioengineering, California Institute of Technology, Pasadena, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1556-4864
  12. Lawrence F Drummy

    Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, United States
    Competing interests
    No competing interests declared.
  13. Mohamed Y El-Naggar

    Department of Physics and Astronomy, Biological Sciences, and Chemistry, University of Southern California, Los Angeles, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5599-6309
  14. Sarah M Glaven

    Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, United States
    Competing interests
    Sarah M Glaven, DP and SG hold the patent US10793865B2 on Transferrable mechanism of generating inducible.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0857-3391

Funding

U.S. Department of Defense

  • Sarah M Glaven

Office of Naval Research (N00014-18-1-2632)

  • Mohamed Y El-Naggar

National Science Foundation (DEB-1542527)

  • Mohamed Y El-Naggar

U.S. Department of Energy (DE-FG02-13ER16415)

  • Mohamed Y El-Naggar

National Institute of General Medical Sciences (GM122588)

  • Grant J Jensen

U.S. Army Combat Capabilities Development Command (PE 0601102A Project VR9)

  • Aleksandr E Miklos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,184
    views
  • 333
    downloads
  • 5
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel A Phillips
  2. Lori A Zacharoff
  3. Cheri M Hampton
  4. Grace W Chong
  5. Anthony P Malanoski
  6. Lauren Ann Metskas
  7. Shuai Xu
  8. Lina J Bird
  9. Brian J Eddie
  10. Aleksandr E Miklos
  11. Grant J Jensen
  12. Lawrence F Drummy
  13. Mohamed Y El-Naggar
  14. Sarah M Glaven
(2021)
A bacterial membrane sculpting protein with BAR domain-like activity
eLife 10:e60049.
https://doi.org/10.7554/eLife.60049

Share this article

https://doi.org/10.7554/eLife.60049

Further reading

    1. Microbiology and Infectious Disease
    Srinivasan Vijay, Nguyen Le Hoai Bao ... Nguyen Thuy Thuong
    Research Article

    Antibiotic tolerance in Mycobacterium tuberculosis reduces bacterial killing, worsens treatment outcomes, and contributes to resistance. We studied rifampicin tolerance in isolates with or without isoniazid resistance (IR). Using a minimum duration of killing assay, we measured rifampicin survival in isoniazid-susceptible (IS, n=119) and resistant (IR, n=84) isolates, correlating tolerance with bacterial growth, rifampicin minimum inhibitory concentrations (MICs), and isoniazid-resistant mutations. Longitudinal IR isolates were analyzed for changes in rifampicin tolerance and genetic variant emergence. The median time for rifampicin to reduce the bacterial population by 90% (MDK90) increased from 1.23 days (IS) and 1.31 days (IR) to 2.55 days (IS) and 1.98 days (IR) over 15–60 days of incubation, indicating fast and slow-growing tolerant sub-populations. A 6 log10-fold survival fraction classified tolerance as low, medium, or high, showing that IR is linked to increased tolerance and faster growth (OR = 2.68 for low vs. medium, OR = 4.42 for low vs. high, p-trend = 0.0003). High tolerance in IR isolates was associated with rifampicin treatment in patients and genetic microvariants. These findings suggest that IR tuberculosis should be assessed for high rifampicin tolerance to optimize treatment and prevent the development of multi-drug-resistant tuberculosis.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zachary H Williams, Alvaro Dafonte Imedio ... Welkin E Johnson
    Research Article Updated

    HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact open reading frames, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3′ long terminal repeat (LTR), derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8-derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec–RcRE export system was replaced by a CTE mechanism.