Global and local tension measurements in biomimetic skeletal muscle tissues reveals early mechanical homeostasis
Abstract
Tension and mechanical properties of muscle tissue are tightly related to proper skeletal muscle function, which makes experimental access to the biomechanics of muscle tissue formation a key requirement to advance our understanding of muscle function and development. Recently developed elastic in vitro culture chambers allow for raising 3D muscle tissue under controlled conditions and to measure global tissue force generation. However, these chambers are inherently incompatible with high resolution microscopy limiting their usability to global force measurements, and preventing the exploitation of modern fluorescence based investigation methods for live and dynamic measurements. Here we present a new chamber design pairing global force measurements, quantified from post deflection, with local tension measurements obtained from elastic hydrogel beads embedded in muscle tissue. High resolution 3D video microscopy of engineered muscle formation, enabled by the new chamber, shows an early mechanical tissue homeostasis that remains stable in spite of continued myotube maturation.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Programs are published on GitHub.
Article and author information
Author details
Funding
Human Frontier Science Program (RGP0018/2017)
- Penney M Gilbert
- Timo Betz
H2020 European Research Council (771201)
- Timo Betz
Natural Sciences and Engineering Research Council of Canada (RGPIN-4357)
- Penney M Gilbert
Natural Sciences and Engineering Research Council of Canada (RGPIN-7144)
- Penney M Gilbert
Natural Sciences and Engineering Research Council of Canada (Training Program in Organ-on-a-Chip Engineering and Entrepreneurship Scholarship)
- Mohammad Ebrahim Afshar
University of Toronto (Canada Research Chair in Endogenous Repair)
- Penney M Gilbert
Deutsche Forschungsgemeinschaft (SFB 803)
- Roman Tsukanov
- Nazar Oleksiievets
- Jörg Enderlein
Deutsche Forschungsgemeinschaft (EXC 2067/1)
- Jörg Enderlein
- Timo Betz
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Patricia Bassereau, Institut Curie, France
Version history
- Received: June 17, 2020
- Accepted: January 17, 2021
- Accepted Manuscript published: January 18, 2021 (version 1)
- Version of Record published: February 25, 2021 (version 2)
Copyright
© 2021, Hofemeier et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,636
- Page views
-
- 491
- Downloads
-
- 14
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
- Physics of Living Systems
Olfactory navigation is observed across species and plays a crucial role in locating resources for survival. In the laboratory, understanding the behavioral strategies and neural circuits underlying odor-taxis requires a detailed understanding of the animal’s sensory environment. For small model organisms like Caenorhabditis elegans and larval Drosophila melanogaster, controlling and measuring the odor environment experienced by the animal can be challenging, especially for airborne odors, which are subject to subtle effects from airflow, temperature variation, and from the odor’s adhesion, adsorption, or reemission. Here, we present a method to control and measure airborne odor concentration in an arena compatible with an agar substrate. Our method allows continuous controlling and monitoring of the odor profile while imaging animal behavior. We construct stationary chemical landscapes in an odor flow chamber through spatially patterned odorized air. The odor concentration is measured with a spatially distributed array of digital gas sensors. Careful placement of the sensors allows the odor concentration across the arena to be continuously inferred in space and monitored through time. We use this approach to measure the odor concentration that each animal experiences as it undergoes chemotaxis behavior and report chemotaxis strategies for C. elegans and D. melanogaster larvae populations as they navigate spatial odor landscapes.
-
- Physics of Living Systems
- Structural Biology and Molecular Biophysics
Non-membrane-bound biomolecular condensates have been proposed to represent an important mode of subcellular organization in diverse biological settings. However, the fundamental principles governing the spatial organization and dynamics of condensates at the atomistic level remain unclear. The Saccharomyces cerevisiae Lge1 protein is required for histone H2B ubiquitination and its N-terminal intrinsically disordered fragment (Lge11-80) undergoes robust phase separation. This study connects single- and multi-chain all-atom molecular dynamics simulations of Lge11-80 with the in vitro behavior of Lge11-80 condensates. Analysis of modeled protein-protein interactions elucidates the key determinants of Lge11-80 condensate formation and links configurational entropy, valency, and compactness of proteins inside the condensates. A newly derived analytical formalism, related to colloid fractal cluster formation, describes condensate architecture across length scales as a function of protein valency and compactness. In particular, the formalism provides an atomistically resolved model of Lge11-80 condensates on the scale of hundreds of nanometers starting from individual protein conformers captured in simulations. The simulation-derived fractal dimensions of condensates of Lge11-80 and its mutants agree with their in vitro morphologies. The presented framework enables a multiscale description of biomolecular condensates and embeds their study in a wider context of colloid self-organization.