In silico analysis of myeloid cells across animal kingdom reveal neutrophil evolution by colony stimulating factors
Abstract
Neutrophils constitute the largest population of phagocytic granulocytes in the blood of mammals. The development and function of neutrophils and monocytes is primarily governed by the granulocyte colony-stimulating factor receptor family (CSF3R/CSF3) and macrophage colony-stimulating factor receptor family (CSF1R/IL34/CSF1) respectively. Using various techniques this study considered how the emergence of receptor:ligand pairings shaped the distribution of blood myeloid cell populations. Comparative gene analysis supported the ancestral pairings of CSF1R/IL34 and CSF3R/CSF3, and the emergence of CSF1 later in lineages after the advent of Jawed/Jawless fish. Further analysis suggested that the emergence of CSF3 lead to reorganisation of granulocyte distribution between amphibian and early reptiles. However, the advent of endothermy likely contributed to the dominance of the neutrophil/heterophil in modern-day mammals and birds. In summary, we show that the emergence of CSF3R/CSF3 was a key factor in the subsequent evolution of the modern-day mammalian neutrophil.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files
Article and author information
Author details
Funding
Medical Research Council (MR/M003159/1)
- Kevin J Woollard
Kidney Research UK (RP_019_20160303)
- Kevin J Woollard
Kidney Research UK (RP_002_20170914)
- Kevin J Woollard
British Heart Foundation (PG/18/41/33813)
- Kevin J Woollard
The authors declare that there was no direct funding for this work. Grants from MRC (MR/M003159/1), Kidney Research UK (RP_019_20160303, RP_002_20170914) and BHF (PG/18/41/33813) support the Woollard labKJW is now an employee for AstraZeneca (BioPharmaceuticals R&D, Cambridge, UK). All of this work was performed at Imperial College London. No funding or support was received from AstraZeneca.
Reviewing Editor
- Antonis Rokas, Vanderbilt University, United States
Publication history
- Received: June 21, 2020
- Accepted: November 24, 2020
- Accepted Manuscript published: November 25, 2020 (version 1)
- Version of Record published: December 4, 2020 (version 2)
Copyright
© 2020, Pinheiro et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,227
- Page views
-
- 126
- Downloads
-
- 5
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Evolutionary Biology
The gill skeleton of cartilaginous fishes (sharks, skates, rays, and holocephalans) exhibits a striking anterior–posterior polarity, with a series of fine appendages called branchial rays projecting from the posterior margin of the gill arch cartilages. We previously demonstrated in the skate (Leucoraja erinacea) that branchial rays derive from a posterior domain of pharyngeal arch mesenchyme that is responsive to Sonic hedgehog (Shh) signaling from a distal gill arch epithelial ridge (GAER) signaling centre. However, how branchial ray progenitors are specified exclusively within posterior gill arch mesenchyme is not known. Here, we show that genes encoding several Wnt ligands are expressed in the ectoderm immediately adjacent to the skate GAER, and that these Wnt signals are transduced largely in the anterior arch environment. Using pharmacological manipulation, we show that inhibition of Wnt signalling results in an anterior expansion of Shh signal transduction in developing skate gill arches, and in the formation of ectopic anterior branchial ray cartilages. Our findings demonstrate that ectodermal Wnt signalling contributes to gill arch skeletal polarity in skate by restricting Shh signal transduction and chondrogenesis to the posterior arch environment and highlights the importance of signalling interactions at embryonic tissue boundaries for cell fate determination in vertebrate pharyngeal arches.
-
- Ecology
- Evolutionary Biology
Spider venoms are a complex concoction of enzymes, polyamines, inorganic salts, and disulfide-rich peptides (DRPs). Although DRPs are widely distributed and abundant, their bevolutionary origin has remained elusive. This knowledge gap stems from the extensive molecular divergence of DRPs and a lack of sequence and structural data from diverse lineages. By evaluating DRPs under a comprehensive phylogenetic, structural and evolutionary framework, we have not only identified 78 novel spider toxin superfamilies but also provided the first evidence for their common origin. We trace the origin of these toxin superfamilies to a primordial knot – which we name ‘Adi Shakti’, after the creator of the Universe according to Hindu mythology – 375 MYA in the common ancestor of Araneomorphae and Mygalomorphae. As the lineages under evaluation constitute nearly 60% of extant spiders, our findings provide fascinating insights into the early evolution and diversification of the spider venom arsenal. Reliance on a single molecular toxin scaffold by nearly all spiders is in complete contrast to most other venomous animals that have recruited into their venoms diverse toxins with independent origins. By comparatively evaluating the molecular evolutionary histories of araneomorph and mygalomorph spider venom toxins, we highlight their contrasting evolutionary diversification rates. Our results also suggest that venom deployment (e.g. prey capture or self-defense) influences evolutionary diversification of DRP toxin superfamilies.