RUNX1 marks a luminal castration resistant lineage established at the onset of prostate development

  1. Renaud Mevel
  2. Ivana Steiner
  3. Susan Mason
  4. Laura CA Galbraith
  5. Rahima Patel
  6. Muhammad ZH Fadlullah
  7. Imran Ahmad
  8. Hing Y Leung
  9. Pedro Oliveira
  10. Karen Blyth
  11. Esther Baena
  12. Georges Lacaud  Is a corresponding author
  1. Cancer Research UK Manchester Institute, The University of Manchester, United Kingdom
  2. Cancer Research UK Beatson Institute, United Kingdom
  3. The Christie NHS Foundation Trust, United Kingdom

Abstract

The characterization of prostate epithelial hierarchy and lineage heterogeneity is critical to understand its regenerative properties and malignancies. Here, we report that the transcription factor RUNX1 marks a specific subpopulation of proximal luminal cells (PLCs), enriched in the periurethral region of the developing and adult mouse prostate, and distinct from the previously identified NKX3.1+ luminal castration resistant cells. Using scRNA-seq profiling and genetic lineage tracing, we show that RUNX1+ PLCs are unaffected by androgen deprivation, and do not contribute to the regeneration of the distal luminal compartments. Furthermore, we demonstrate that a transcriptionally similar RUNX1+ population emerges at the onset of embryonic prostate specification to populate the proximal region of the ducts. Collectively, our results reveal that RUNX1+ PLCs is an intrinsic castration-resistant and self-sustained lineage that emerges early during prostate development and provide new insights into the lineage relationships of the prostate epithelium.

Data availability

Raw sequencing files and processed gene expression matrices have been deposited in the NCBI Gene Expression Omnibus under the accession number GSE151944. The processed datasets for both mouse adult prostate and UGS prostate explant cultures can be accessed via a searchable R Shiny application available at http://shiny.cruk.manchester.ac.uk/pscapp/. All code used to process data and generate figures is available on a public GitHub repository at https://github.com/glacaud/prostate-scRNAseq.

The following data sets were generated

Article and author information

Author details

  1. Renaud Mevel

    Stem Cell Biology, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Ivana Steiner

    Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2744-1952
  3. Susan Mason

    Transgenic models of cancer, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Laura CA Galbraith

    Transgenic models of cancer, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Rahima Patel

    Stem Cell Biology, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Muhammad ZH Fadlullah

    Stem Cell Biology, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Imran Ahmad

    Models of advanced prostate cancer, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Hing Y Leung

    Urology Research Group, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Pedro Oliveira

    Department of Pathology, The Christie NHS Foundation Trust, Manchester, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Karen Blyth

    Urology Research Group, Cancer Research UK Beatson Institute, Glasgow, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. Esther Baena

    Prostate Oncobiology, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Georges Lacaud

    Stem Cell Biology, Cancer Research UK Manchester Institute, The University of Manchester, Macclesfield, United Kingdom
    For correspondence
    georges.lacaud@cruk.manchester.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5630-2417

Funding

Cancer Research UK (C5759/A20971)

  • Esther Baena
  • Georges Lacaud

Cancer Research UK (C596/A17196)

  • Karen Blyth

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Wilbert Zwart, Netherlands Cancer Institute, Netherlands

Ethics

Animal experimentation: Animal experiments were approved by the Animal Welfare and Ethics Review Body (AWERB) of the Cancer Research UK Manchester Institute and conducted according to the UK Home Office Project Licence (PPL 70/8580). Genetic lineage-tracing experiments were performed at the Beatson Biological Services Unit (PPL 70/8645 & P5EE22AEE) and approved by the University of Glasgow AWERB. Mice were maintained in purpose-built facility in a 12-hour light/dark cycle with continual access to food and water. All animal procedures were performed on adult males at least 7 weeks of age. Surgical castration was carried out under aseptic conditions.

Version history

  1. Received: June 20, 2020
  2. Accepted: October 6, 2020
  3. Accepted Manuscript published: October 7, 2020 (version 1)
  4. Version of Record published: November 5, 2020 (version 2)

Copyright

© 2020, Mevel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,352
    views
  • 263
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Renaud Mevel
  2. Ivana Steiner
  3. Susan Mason
  4. Laura CA Galbraith
  5. Rahima Patel
  6. Muhammad ZH Fadlullah
  7. Imran Ahmad
  8. Hing Y Leung
  9. Pedro Oliveira
  10. Karen Blyth
  11. Esther Baena
  12. Georges Lacaud
(2020)
RUNX1 marks a luminal castration resistant lineage established at the onset of prostate development
eLife 9:e60225.
https://doi.org/10.7554/eLife.60225

Share this article

https://doi.org/10.7554/eLife.60225

Further reading

    1. Developmental Biology
    2. Medicine
    Stephen E Flaherty III, Olivier Bezy ... Zhidan Wu
    Research Article

    From a forward mutagenetic screen to discover mutations associated with obesity, we identified mutations in the Spag7 gene linked to metabolic dysfunction in mice. Here, we show that SPAG7 KO mice are born smaller and develop obesity and glucose intolerance in adulthood. This obesity does not stem from hyperphagia, but a decrease in energy expenditure. The KO animals also display reduced exercise tolerance and muscle function due to impaired mitochondrial function. Furthermore, SPAG7-deficiency in developing embryos leads to intrauterine growth restriction, brought on by placental insufficiency, likely due to abnormal development of the placental junctional zone. This insufficiency leads to loss of SPAG7-deficient fetuses in utero and reduced birth weights of those that survive. We hypothesize that a ‘thrifty phenotype’ is ingrained in SPAG7 KO animals during development that leads to adult obesity. Collectively, these results indicate that SPAG7 is essential for embryonic development and energy homeostasis later in life.

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Nikola Sekulovski, Jenna C Wettstein ... Kenichiro Taniguchi
    Research Article

    Amniogenesis, a process critical for continuation of healthy pregnancy, is triggered in a collection of pluripotent epiblast cells as the human embryo implants. Previous studies have established that bone morphogenetic protein (BMP) signaling is a major driver of this lineage specifying process, but the downstream BMP-dependent transcriptional networks that lead to successful amniogenesis remain to be identified. This is, in part, due to the current lack of a robust and reproducible model system that enables mechanistic investigations exclusively into amniogenesis. Here, we developed an improved model of early amnion specification, using a human pluripotent stem cell-based platform in which the activation of BMP signaling is controlled and synchronous. Uniform amniogenesis is seen within 48 hr after BMP activation, and the resulting cells share transcriptomic characteristics with amnion cells of a gastrulating human embryo. Using detailed time-course transcriptomic analyses, we established a previously uncharacterized BMP-dependent amniotic transcriptional cascade, and identified markers that represent five distinct stages of amnion fate specification; the expression of selected markers was validated in early post-implantation macaque embryos. Moreover, a cohort of factors that could potentially control specific stages of amniogenesis was identified, including the transcription factor TFAP2A. Functionally, we determined that, once amniogenesis is triggered by the BMP pathway, TFAP2A controls the progression of amniogenesis. This work presents a temporally resolved transcriptomic resource for several previously uncharacterized amniogenesis states and demonstrates a critical intermediate role for TFAP2A during amnion fate specification.